COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 1QAP
To determine
Can a system absorb heat without increasing its internal energy?
Expert Solution & Answer
Answer to Problem 1QAP
Yes, a system can absorb heat without increasing its internal energy.
Explanation of Solution
Yes, a system can absorb heat without increasing its internal energy. A system
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Chapter 15 Solutions
COLLEGE PHYSICS
Ch. 15 - Prob. 1QAPCh. 15 - Prob. 2QAPCh. 15 - Prob. 3QAPCh. 15 - Prob. 4QAPCh. 15 - Prob. 5QAPCh. 15 - Prob. 6QAPCh. 15 - Prob. 7QAPCh. 15 - Prob. 8QAPCh. 15 - Prob. 9QAPCh. 15 - Prob. 10QAP
Ch. 15 - Prob. 11QAPCh. 15 - Prob. 12QAPCh. 15 - Prob. 13QAPCh. 15 - Prob. 14QAPCh. 15 - Prob. 15QAPCh. 15 - Prob. 16QAPCh. 15 - Prob. 17QAPCh. 15 - Prob. 18QAPCh. 15 - Prob. 19QAPCh. 15 - Prob. 20QAPCh. 15 - Prob. 21QAPCh. 15 - Prob. 22QAPCh. 15 - Prob. 23QAPCh. 15 - Prob. 24QAPCh. 15 - Prob. 25QAPCh. 15 - Prob. 26QAPCh. 15 - Prob. 27QAPCh. 15 - Prob. 28QAPCh. 15 - Prob. 29QAPCh. 15 - Prob. 30QAPCh. 15 - Prob. 31QAPCh. 15 - Prob. 32QAPCh. 15 - Prob. 33QAPCh. 15 - Prob. 34QAPCh. 15 - Prob. 35QAPCh. 15 - Prob. 36QAPCh. 15 - Prob. 37QAPCh. 15 - Prob. 38QAPCh. 15 - Prob. 39QAPCh. 15 - Prob. 40QAPCh. 15 - Prob. 41QAPCh. 15 - Prob. 42QAPCh. 15 - Prob. 43QAPCh. 15 - Prob. 44QAPCh. 15 - Prob. 45QAPCh. 15 - Prob. 46QAPCh. 15 - Prob. 47QAPCh. 15 - Prob. 48QAPCh. 15 - Prob. 49QAPCh. 15 - Prob. 50QAPCh. 15 - Prob. 51QAPCh. 15 - Prob. 52QAPCh. 15 - Prob. 53QAPCh. 15 - Prob. 54QAPCh. 15 - Prob. 55QAPCh. 15 - Prob. 56QAPCh. 15 - Prob. 57QAPCh. 15 - Prob. 58QAPCh. 15 - Prob. 59QAPCh. 15 - Prob. 60QAPCh. 15 - Prob. 61QAPCh. 15 - Prob. 62QAPCh. 15 - Prob. 63QAPCh. 15 - Prob. 64QAPCh. 15 - Prob. 65QAPCh. 15 - Prob. 66QAPCh. 15 - Prob. 67QAPCh. 15 - Prob. 68QAPCh. 15 - Prob. 69QAPCh. 15 - Prob. 70QAPCh. 15 - Prob. 71QAPCh. 15 - Prob. 72QAPCh. 15 - Prob. 73QAPCh. 15 - Prob. 74QAPCh. 15 - Prob. 75QAPCh. 15 - Prob. 76QAPCh. 15 - Prob. 77QAPCh. 15 - Prob. 78QAPCh. 15 - Prob. 79QAPCh. 15 - Prob. 80QAPCh. 15 - Prob. 81QAPCh. 15 - Prob. 82QAPCh. 15 - Prob. 83QAPCh. 15 - Prob. 84QAPCh. 15 - Prob. 85QAPCh. 15 - Prob. 86QAPCh. 15 - Prob. 87QAPCh. 15 - Prob. 88QAPCh. 15 - Prob. 89QAPCh. 15 - Prob. 90QAPCh. 15 - Prob. 91QAPCh. 15 - Prob. 92QAPCh. 15 - Prob. 93QAPCh. 15 - Prob. 94QAPCh. 15 - Prob. 95QAPCh. 15 - Prob. 96QAPCh. 15 - Prob. 97QAPCh. 15 - Prob. 98QAPCh. 15 - Prob. 99QAPCh. 15 - Prob. 100QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Compare the charge in internal energy of an ideal gas for a quasi-static adiabatic expansion with that for a quasi-static isothermal expansion. What happens to the temperature of an ideal gas in an adiabatic expansion?arrow_forwardA thermodynamic system undergoes a process in which its internal energy decreases by 500 J. Over the same time interval, 220 J of work is done on the system. Find the energy transferred from it by heat.arrow_forwardA certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forward
- If the refrigerator door is left what happens to the temperature of the kitchen?arrow_forwardReview. A house has well-insulated walls. It contains a volume of 100 m3 of air at 300 K. (a) Calculate the energy required to increase the temperature of this diatomic ideal gas by 1.00C. (b) What If? If all this energy could be used to lift an object of mass m through a height of 2.00 m, what is the value of m?arrow_forwardOne mole of neon gas is heated from 300 K to 420 K at constant pressure. Calculate (a) the energy Q transferred to the gas, (b) the change in the internal energy of the gas, and (c) the work done on the gas. Note that neon has a molar specific heat of Cp = 20.79 J/mol K for a constant-pressure process.arrow_forward
- The insulated cylinder shown below is closed at both ends and contains an insulating piston that is flee to move on frictionless bearings. The piston divides the chamber into two compartments containing gases A and B. Originally, each compartment has a volume of 5.0102 m3 and contains a monatomic ideal gas at a temperature of and a pressure of 1.0 atm. (a) How many moles of gas are in each compartment? (b) Heat Q is slowly added to A so that it expands and B is compressed until the pressure of both gases is 3.0 atm. Use the fact that the compression of B is adiabatic to determine the final volume of both gases. (c) What are their final temperatures? (d) What is the value of Q?arrow_forwardGive an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system's entropy in this process?arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases, (d) The internal energy of the gas remains constant, (e) None of those statements is true.arrow_forward
- Calculate the increase in entropy of the Universe when you add 20.0 g of 5.00C cream to 200 g of 60.0C coffee. Assume that the specific heats of cream and coffee are both 4.20J/g C.arrow_forwardWhy are there two specific heats for gases Cp and Cv , yet only one given for solid?arrow_forwardA certain steel railroad rails 13 yd in length and weighs 70.0 lb/yd How much thermal energy is required to increase the length of such a rail by 3.0 mm? .Note: Assume the steel has the same specific heal as iron.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning