COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 73QAP
To determine
To calculate:
The minimum entropy change of ice.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
50 GOA lab sample of gas is taken p
through cycle abca shown in the p-V
diagram of Fig. 18-43. The net work
done is +1.2 J. Along path ab, the
change in the internal energy is +3.0 J
and the magnitude of the work done is
5.0 J. Along path ca, the energy trans-
ferred to the gas as heat is +2.5 J. How
much energy is transferred as heat
along (a) path ab and (b) path bc?
a
b
-V
Figure 18-43 Problem 50.
46 Suppose 200 J of work is
done on a system and 70.0 cal
is extracted from the system as
heat. In the sense of the first law
of thermodynamics, what are
the values (including algebraic signs) of (a) W, (b) Q, and (c) AEint?
0
V₁
Volume (m³)
Figure 18-39 Problem 45.
50 O A lab sample of gas is taken
through cycle abca shown in the p-V
diagram of Fig. 18-43. The net work
done is +1.2 J. Along path ab, the
change in the internal energy is +3.0 J
and the magnitude of the work done
is 5.0 J. Along path ca, the energy
transferred to the gas as heat is +2.5
J. How much energy is transferred as
heat along (a) path ab and (b) path bc? Figure 18-43 Problem 50.
Chapter 15 Solutions
COLLEGE PHYSICS
Ch. 15 - Prob. 1QAPCh. 15 - Prob. 2QAPCh. 15 - Prob. 3QAPCh. 15 - Prob. 4QAPCh. 15 - Prob. 5QAPCh. 15 - Prob. 6QAPCh. 15 - Prob. 7QAPCh. 15 - Prob. 8QAPCh. 15 - Prob. 9QAPCh. 15 - Prob. 10QAP
Ch. 15 - Prob. 11QAPCh. 15 - Prob. 12QAPCh. 15 - Prob. 13QAPCh. 15 - Prob. 14QAPCh. 15 - Prob. 15QAPCh. 15 - Prob. 16QAPCh. 15 - Prob. 17QAPCh. 15 - Prob. 18QAPCh. 15 - Prob. 19QAPCh. 15 - Prob. 20QAPCh. 15 - Prob. 21QAPCh. 15 - Prob. 22QAPCh. 15 - Prob. 23QAPCh. 15 - Prob. 24QAPCh. 15 - Prob. 25QAPCh. 15 - Prob. 26QAPCh. 15 - Prob. 27QAPCh. 15 - Prob. 28QAPCh. 15 - Prob. 29QAPCh. 15 - Prob. 30QAPCh. 15 - Prob. 31QAPCh. 15 - Prob. 32QAPCh. 15 - Prob. 33QAPCh. 15 - Prob. 34QAPCh. 15 - Prob. 35QAPCh. 15 - Prob. 36QAPCh. 15 - Prob. 37QAPCh. 15 - Prob. 38QAPCh. 15 - Prob. 39QAPCh. 15 - Prob. 40QAPCh. 15 - Prob. 41QAPCh. 15 - Prob. 42QAPCh. 15 - Prob. 43QAPCh. 15 - Prob. 44QAPCh. 15 - Prob. 45QAPCh. 15 - Prob. 46QAPCh. 15 - Prob. 47QAPCh. 15 - Prob. 48QAPCh. 15 - Prob. 49QAPCh. 15 - Prob. 50QAPCh. 15 - Prob. 51QAPCh. 15 - Prob. 52QAPCh. 15 - Prob. 53QAPCh. 15 - Prob. 54QAPCh. 15 - Prob. 55QAPCh. 15 - Prob. 56QAPCh. 15 - Prob. 57QAPCh. 15 - Prob. 58QAPCh. 15 - Prob. 59QAPCh. 15 - Prob. 60QAPCh. 15 - Prob. 61QAPCh. 15 - Prob. 62QAPCh. 15 - Prob. 63QAPCh. 15 - Prob. 64QAPCh. 15 - Prob. 65QAPCh. 15 - Prob. 66QAPCh. 15 - Prob. 67QAPCh. 15 - Prob. 68QAPCh. 15 - Prob. 69QAPCh. 15 - Prob. 70QAPCh. 15 - Prob. 71QAPCh. 15 - Prob. 72QAPCh. 15 - Prob. 73QAPCh. 15 - Prob. 74QAPCh. 15 - Prob. 75QAPCh. 15 - Prob. 76QAPCh. 15 - Prob. 77QAPCh. 15 - Prob. 78QAPCh. 15 - Prob. 79QAPCh. 15 - Prob. 80QAPCh. 15 - Prob. 81QAPCh. 15 - Prob. 82QAPCh. 15 - Prob. 83QAPCh. 15 - Prob. 84QAPCh. 15 - Prob. 85QAPCh. 15 - Prob. 86QAPCh. 15 - Prob. 87QAPCh. 15 - Prob. 88QAPCh. 15 - Prob. 89QAPCh. 15 - Prob. 90QAPCh. 15 - Prob. 91QAPCh. 15 - Prob. 92QAPCh. 15 - Prob. 93QAPCh. 15 - Prob. 94QAPCh. 15 - Prob. 95QAPCh. 15 - Prob. 96QAPCh. 15 - Prob. 97QAPCh. 15 - Prob. 98QAPCh. 15 - Prob. 99QAPCh. 15 - Prob. 100QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Give an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system's entropy in this process?arrow_forwardWhich of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forwardWe ordinarily say that U=0 for an isothermal process. Does this assume no phase change takes place? Explain your answer.arrow_forward
- A gun is a heat engine. In particular, it is an internal combustion piston engine that does not operate in a cycle, but comes apart during its adiabatic expansion process. A certain gun consists of 1.80 kg of iron. It fires one 2.40-g bullet at 320 m/s with an energy efficiency of 1.10%. Assume the body of the gun absorbs all the energy exhaustthe other 98.9%and increases uniformly in temperature for a short time interval before it loses any energy by heat into the environment. Find its temperature increase.arrow_forwardA biology laboratory is maintained at a constant temperature of 7.00C by an air conditioner, which is vented to the air outside. On a typical hot summer day, the outside temperature is 27.0C and the air-conditioning unit emits energy to the outside at a rate of 10.0 kW. Model the unit as having a coefficient of performance (COP) equal to 40.0% of the COP of an ideal Carnot device. (a) At what rate does the air conditioner remove energy from the laboratory? (b) Calculate the power required for the work input. (c) Find the change in entropy of the Universe produced by the air conditioner in 1.00 h. (d) What If? The outside temperature increases to 32.0C. Find the fractional change in the COP of the air conditioner.arrow_forwardAn ice tray contains 500 g of liquid water at 0C. Calculate the change in entropy of the water as it freezes slowly and completely at 0C.arrow_forward
- There is no change in the internal of an ideal gas undergoing an isothermal process since the internal energy depends only on the temperature. Is it therefore correct to say that an isothermal process is the same as an adiabatic process for an ideal gas? Explain your answer. `arrow_forwardA gascooled nuclear reactor operates between hot and cold reservoir temperatures of 700C and 27.0C. (a) What is the maximum eficiency of a heat engine operating between these temperatures? (b) Find the ratio of this eficiency to the Carnot eficiency of a standard nuclear reactor (found in Example 15.4).arrow_forwardA sealed container holding 0.500 kg of liquid nitrogen at its boiling point of 77.3 K is placed in a large room at 21.0C. Energy is transferred from the room to the nitrogen as the liquid nitrogen boils into a gas and then warms to the rooms temperature. (a) Assuming the rooms temperature remains essentially unchanged at 21.0C, calculate the energy transferred from the room to the nitrogen. (b) Estimate the change in entropy of the room. Liquid nitrogen has a latent heat of vaporization of 2.01 105 J/kg. The specific heat of N2 gas at constant pressure is CN2 = 1.04 103J/kg K.arrow_forward
- What is the change in entropy in an adiabatic process? Does this imply that adiabatic processes are reversible? Can a process be precisely adiabatic for a macroscopic system?arrow_forwardA gas in a cylindrical closed container is adiabatically and quasi-statically expanded from a state A (3 MPa, 2 L) to a state B with volume of 6 L along the path 1.8pV= constant. (a) Plot the path in the pV plane. (b) Find the amount of work done by the gas and the change in the internal energy of the gas during the process.arrow_forward(a) How much heat transfer occurs from 20.0 kg of 90.0C water placed in contact with 20.0 kg of 10.0C water, producing a final temperature of 50.0C ? (b) How much work could a Carnot engine do with this heat transfer, assuming it operates between two reservoirs at constant temperatures of 90.0C and 10.0C ? (c) What increase in entropy is produced by mixing 20.0 kg of 90.0C water with 20.0 kg of 10.0C water? (d) Calculate the amount of work made unavailable by this mixing using a low temperature of 10.0C, and compare it with the work done by the Garnet engine. Explicitly show how you follow the steps in the Problem-Solving Strategies for Entropy. (e) Discuss how everyday processes make increasingly more energy unavailable to do work, as implied by this problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY