COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 5QAP
To determine
Why the temperature of a gas gets increased when we compress it?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
COLLEGE PHYSICS
Ch. 15 - Prob. 1QAPCh. 15 - Prob. 2QAPCh. 15 - Prob. 3QAPCh. 15 - Prob. 4QAPCh. 15 - Prob. 5QAPCh. 15 - Prob. 6QAPCh. 15 - Prob. 7QAPCh. 15 - Prob. 8QAPCh. 15 - Prob. 9QAPCh. 15 - Prob. 10QAP
Ch. 15 - Prob. 11QAPCh. 15 - Prob. 12QAPCh. 15 - Prob. 13QAPCh. 15 - Prob. 14QAPCh. 15 - Prob. 15QAPCh. 15 - Prob. 16QAPCh. 15 - Prob. 17QAPCh. 15 - Prob. 18QAPCh. 15 - Prob. 19QAPCh. 15 - Prob. 20QAPCh. 15 - Prob. 21QAPCh. 15 - Prob. 22QAPCh. 15 - Prob. 23QAPCh. 15 - Prob. 24QAPCh. 15 - Prob. 25QAPCh. 15 - Prob. 26QAPCh. 15 - Prob. 27QAPCh. 15 - Prob. 28QAPCh. 15 - Prob. 29QAPCh. 15 - Prob. 30QAPCh. 15 - Prob. 31QAPCh. 15 - Prob. 32QAPCh. 15 - Prob. 33QAPCh. 15 - Prob. 34QAPCh. 15 - Prob. 35QAPCh. 15 - Prob. 36QAPCh. 15 - Prob. 37QAPCh. 15 - Prob. 38QAPCh. 15 - Prob. 39QAPCh. 15 - Prob. 40QAPCh. 15 - Prob. 41QAPCh. 15 - Prob. 42QAPCh. 15 - Prob. 43QAPCh. 15 - Prob. 44QAPCh. 15 - Prob. 45QAPCh. 15 - Prob. 46QAPCh. 15 - Prob. 47QAPCh. 15 - Prob. 48QAPCh. 15 - Prob. 49QAPCh. 15 - Prob. 50QAPCh. 15 - Prob. 51QAPCh. 15 - Prob. 52QAPCh. 15 - Prob. 53QAPCh. 15 - Prob. 54QAPCh. 15 - Prob. 55QAPCh. 15 - Prob. 56QAPCh. 15 - Prob. 57QAPCh. 15 - Prob. 58QAPCh. 15 - Prob. 59QAPCh. 15 - Prob. 60QAPCh. 15 - Prob. 61QAPCh. 15 - Prob. 62QAPCh. 15 - Prob. 63QAPCh. 15 - Prob. 64QAPCh. 15 - Prob. 65QAPCh. 15 - Prob. 66QAPCh. 15 - Prob. 67QAPCh. 15 - Prob. 68QAPCh. 15 - Prob. 69QAPCh. 15 - Prob. 70QAPCh. 15 - Prob. 71QAPCh. 15 - Prob. 72QAPCh. 15 - Prob. 73QAPCh. 15 - Prob. 74QAPCh. 15 - Prob. 75QAPCh. 15 - Prob. 76QAPCh. 15 - Prob. 77QAPCh. 15 - Prob. 78QAPCh. 15 - Prob. 79QAPCh. 15 - Prob. 80QAPCh. 15 - Prob. 81QAPCh. 15 - Prob. 82QAPCh. 15 - Prob. 83QAPCh. 15 - Prob. 84QAPCh. 15 - Prob. 85QAPCh. 15 - Prob. 86QAPCh. 15 - Prob. 87QAPCh. 15 - Prob. 88QAPCh. 15 - Prob. 89QAPCh. 15 - Prob. 90QAPCh. 15 - Prob. 91QAPCh. 15 - Prob. 92QAPCh. 15 - Prob. 93QAPCh. 15 - Prob. 94QAPCh. 15 - Prob. 95QAPCh. 15 - Prob. 96QAPCh. 15 - Prob. 97QAPCh. 15 - Prob. 98QAPCh. 15 - Prob. 99QAPCh. 15 - Prob. 100QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. This problem is a continuation of Problem 16.29 in Chapter 16. A hot-air balloon consists of an envelope of constant volume 400 m3. Not including the air inside, the balloon and cargo have mass 200 kg. The air outside and originally inside is a diatomic ideal gas at 10.0C and 101 kPa, with density 1.25 kg/m3. A propane burner at the center of the spherical envelope injects energy into the air inside. The air inside stays at constant pressure. Hot air, at just the temperature required to make the balloon lift off, starts to fill the envelope at its closed top, rapidly enough so that negligible energy flows by heat to the cool air below it or out through the wall of the balloon. Air at 10C leaves through an opening at the bottom of the envelope until the whole balloon is filled with hot air at uniform temperature. Then the burner is shut off and the balloon rises from the ground. (a) Evaluate the quantity of energy the burner must transfer to the air in the balloon. (b) The heat value of propanethe internal energy released by burning each kilogramis 50.3 MJ/kg. What mass of propane must be burned?arrow_forwardTwo cylinders A and B at the same temperature contain the same quantity of the same kind of gas. Cylinder A has three times the volume of cylinder B. What can you conclude about the pressures the gases exert? (a) We can conclude nothing about the pressures. (b) The pressure in A is three times the pressure in B. (c) The pressures must be equal. (d) The pressure in A must be one-third the pressure in B.arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forward
- What is the distinction between gas and vapor?arrow_forwardA cylinder that has a 40.0-cm radius and is 50.0 cm deep is filled with air at 20.0C and 1.00 atm (Fig. P10.74a). A 20.0-kg piston is now lowered into the cylinder, compressing the air trapped inside as it takes equilibrium height hi (Fig. P16.74b). Finally, a 25.0-kg dog stands on the piston, further compressing the air, which remains at 20C (Fig. P16.74c). (a) How far down (h) does the piston move when the dog steps onto it? (b) To what temperature should the gas be warmed to raise the piston and dog back to hi?arrow_forwardReview. This problem is a continuation of Problem 39 in Chapter 19. A hot-air balloon consists of an envelope of constant volume 400 m3. Not including tire air inside, the balloon and cargo have mass 200 kg. The air outside and originally inside is a diatomic ideal gas at 10.0C and 101 kPa, with density 1.25 kg/m3. A propane burner at the center of the spherical envelope injects energy into the air inside. The air inside stays at constant pressure. Hot air, at just the temperature required to make the balloon lift off, starts to fill the envelope at its closed top, rapidly enough so that negligible energy flows by heat to the cool air below it or out through the wall of the balloon. Air at 10C leaves through an opening at the bottom of the envelope until the whole balloon is filled with hot air at uniform temperature. Then the burner is shut off and the balloon rises from the ground. (a) Evaluate the quantity of energy the burner must transfer to the air in the balloon. (b) The heat value of propanethe internal energy released by burning each kilogramis 50.3 MJ/kg. What mass of propane must be burned?arrow_forward
- Helium gas is in thermal equilibrium with liquid helium at 4.20 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of a helium atom (mass = 6.64 1027 kg) in it.arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardIn a chemical processing plant, a reaction chamber of fixed volume V0 is connected to a reservoir chamber of fixed volume 4V0 by a passage containing a thermally insulating porous plug. The plug permits the chambers to be at different temperatures. The plug allows gas to pass from either chamber to the other, ensuring that the pressure is the same in both. At one point in the processing, both chambers contain gas at a pressure of 1.00 atm and a temperature of 27.0C. Intake and exhaust valves to the pair of chambers are closed. The reservoir is maintained at 27.0C while the reaction chamber is heated to 400C. What is the pressure in both chambers after that is done?arrow_forward
- A popular brand of cola contains 6.50 g of carbon dioxide dissolved in 1.00 L of soft drink. If the evaporating carbon dioxide is trapped in a cylinder at 1.00 atm and 20.0C, what volume does the gas occupy?arrow_forwardWhen we use the ideal gas law, the temperature must be in which of the following units? (5.6) (a) C (b) F (c) Karrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning