Structural Analysis, 5th Edition
Structural Analysis, 5th Edition
5th Edition
ISBN: 9788131520444
Author: Aslam Kassimali
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 15, Problem 1P
To determine

Find the reaction and plot the shear and bending moment diagram.

Expert Solution & Answer
Check Mark

Explanation of Solution

Fixed end moment:

Formula to calculate the fixed moment for point load with equal length are PL8.

Formula to calculate the fixed moment for point load with unequal length are Pab2L2 and Pa2bL2.

Formula to calculate the fixed moment for UDL is WL212.

Calculation:

Consider flexural rigidity EI of the beam is constant.

Show the free body diagram of the entire beam as in Figure 1.

Structural Analysis, 5th Edition, Chapter 15, Problem 1P , additional homework tip  1

Refer Figure 1,

Calculate the fixed end moment for AC.

FEMAC=18×20×102(30)2=40kft

Calculate the fixed end moment for CA.

FEMCA=18×202×10(30)2=80kft

Calculate the fixed end moment for CE.

FEMCE=10×308=37.5kft

Calculate the fixed end moment for EC.

FEMEC=10×308=37.5kft

Calculate the slope deflection equation for the member AC.

MAC=2EIL(2θA+θC3ψ)+FEMAC

Here, ψ is the chord rotation, θA is the slope at the point A, and θC is the slope at the point C.

Substitute 0 for ψ, 0 for θA, 30ft for L and 40kft for FEMAC.

MAC=2EI30(2(0)+θC3(0))+40=0.0667EIθC+40        (1)

Calculate the slope deflection equation for the member CA.

MCA=2EIL(2θC+θA3ψ)+FEMCA

Substitute 0 for ψ, 0 for θA, 30ft for L and 80kft for FEMCA.

MCA=2EI30(2θC+03(0))80=0.133EIθC80        (2)

Calculate the slope deflection equation for the member CE.

MCE=2EIL(2θC+θE3ψ)+FEMCE

Substitute 0 for ψ, 0 for θE, 30ft for L, and 37.5kft for FEMCE.

MCE=2EI30(2θC+03(0))+37.5=0.133EIθC+37.5        (3)

Calculate the slope deflection equation for the member EC.

MEC=2EIL(2θE+θC3ψ)+FEMEC

Substitute 0 for ψ, 0 for θE, 30ft for L and 37.5kft for FEMEC.

MEC=2EI30(2(0)+θC3(0))37.5=0.0667EIθC37.5        (4)

Write the equilibrium equation as below.

MCA+MCE=0

Substitute equation (2) and equation (3) in above equation.

0.133EIθC80+0.133EIθC+37.5=00.267EIθC42.5=0θC=42.50.267EIθC=159.2EIkft2

Calculate the moment about AC.

Substitute 159.2EIkft2 for θC in equation (1).

MAC=0.0667EI(159.2EI)+40=50.625kft

Calculate the moment about CA.

Substitute 159.2EIkft2 for θC in equation (2).

MCA=0.133EI(159.2EI)80=58.8kft

Calculate the moment about CE.

Substitute 159.2EIkft2 for θC in equation (3).

MCE=0.133EI(159.2EI)+37.5=58.7kft

Calculate the moment about EC.

Substitute 159.2EIkft2 for θC in equation (4).

MEC=0.0667EI(159.2EI)37.5=26.9kft

Consider the member AC of the beam:

Show the free body diagram of the member AC as in Figure 2.

Structural Analysis, 5th Edition, Chapter 15, Problem 1P , additional homework tip  2

Calculate the vertical reaction at the left end of the joint C by taking moment about point A.

+MA=0Cy,L(30)18×(20)+50.62558.8=0Cy,L(30)=368.175Cy,L=368.17530Cy,L=12.27k

Calculate the horizontal reaction at point A by resolving the horizontal equilibrium.

+Fx=0Ax=0

Calculate the vertical reaction at point A by resolving the vertical equilibrium.

+Fy=0Ay18+Cy,L=0Ay18+12.27=0Ay=5.73k

Consider the member CE of the beam:

Show the free body diagram of the member CE as in Figure 2.

Structural Analysis, 5th Edition, Chapter 15, Problem 1P , additional homework tip  3

Calculate the vertical reaction at the right end of the joint C by taking moment about point E.

+ME=0Cy,R(30)+10×(15)26.9+58.7=0Cy,R(30)=181.8Cy,R=181.830Cy,R=6.06k

Calculate the horizontal reaction at point E by resolving the horizontal equilibrium.

+Fx=0Ex=0

Calculate the vertical reaction at point E by resolving the vertical equilibrium.

+Fy=0Ey10+Cy,R=0Ey10+6.06=0Ey=3.94k

Calculate the total reaction at point C .

Cy=Cy,R+Cy,L

Substitute 6.06k for Cy,R and 12.27k for Cy,L.

Cy=6.06+12.27=18.33k

Show the reaction of the beam in Figure 4.

Structural Analysis, 5th Edition, Chapter 15, Problem 1P , additional homework tip  4

Refer Figure 4,

Shear diagram:

Point A:

SA,L=0SA,R=5.73k

Point B:

SB=5.7318=12.27k

Point C:

SC,L=12.27kSC,R=12.27+18.33=6.06k

Point D:

SD,L=6.06kSD,R=6.0610=3.94k

Point E:

SE,L=3.94kSE,R=3.94k+3.94=0k

Plot the shear force diagram of the beam as in Figure 5.

Structural Analysis, 5th Edition, Chapter 15, Problem 1P , additional homework tip  5

Refer Figure 4,

Bending moment diagram:

Point A:

MA=50.625kft

Point B:

MB=50.625+(5.73×20)=64kft

Point C:

MC=58.7kft

Point D:

MD=58.7+(6.06×15)=32.2k

Point E:

ME=26.9kft

Plot the bending moment diagram of the beam as in Figure 6.

Structural Analysis, 5th Edition, Chapter 15, Problem 1P , additional homework tip  6

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider, M people (aka pax) who want to travel by car from O to D. They all start working at D at Q (e.g., Q=8am). If a person departs at time t, assume the time needed to go from O to D is given by c(t)=A+Bx(t), where x(t) is the flow of people departing at time t [car/unit of time]. In addition, a is the penalty for being early at work (E(t) is how early the person arrived when departing at time t), and ẞ is the penalty for being late at work (L(t) is how late the person arrived when departing at time t). Assume 0 < a < 1 < ß. Further assume the departure time choice problem under the equilibrium conditions. Prove that the arrival time of people who depart when most of the M people start their trips is equal to Q.
1. Plot the SWRC (suction vs. volumetric water content) from the van Genuchten (1980) model for the following “base-case” parameters (assume m = 1-1/nvG): alpha vG = 0.35 kPa-1, nvG = 2.2,Delta res = 0.02, and delta S = delta sat = 0.45. These values are approximately representative of a sand.Perform a sensitivity analysis on each of the base case parameters (i.e., vary each by ±10% while holding the other three constant) to determine their relative effects on the SWRC. For example, how would a change in s alter the curve if the other base case parameters stay the same? In your answer, provide 4 plots for the parametric evaluation of each parameter as well as a brief qualitative explanation for each plot (for example, when investigating the effect of alpha vG, show the base-case curve and the curves with different values of alpha vG on the same plot). Be sure that suction is plotted on a logarithmic scale. Also, discuss how theparameters of the van Genuchten SWRC model might differ…
Using AutoCAD and exact measure that number
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,