Describe the photo of the tea kettle at the beginning of this section in terms of
(i) How the heat is transferred to the kettle.
(ii) The amount of work done and by what agents
(iii) How the kettle maintains its internal energy.
Answer to Problem 1CQ
(i) The heat is transferred from the stove to the kettle.
(ii) Work is done from the evaporation of the water to the whistling of the kettle.
(iii)The kettle maintains its internal energy by heating the water inside it.
Explanation of Solution
Introduction:
The kettle on the stove takes thermal energy from the stove and uses it to convert water into steam at constant temperature. As the steam escapes, the kettle sounds a whistle.
The kettle in the picture is placed on the stove. The stove burns fuel and converts the chemical energy stored in the fuel into thermal energy. The base of the kettle is a good conductor of heat. The base of the kettle absorbs heat and transfers it to water inside the kettle. Thus the heat energy provided by the kettle is transferred to the water inside the kettle.
Water absorbs energy and its temperature increases. The molecules of water vibrate with increasing speeds when the temperature of water increases. When the temperature of water reaches the boiling point, water starts to change its state to steam. The molecules in steam are farther apart when compared to the molecules of water. Work is done against the intermolecular forces between the molecules of water, when water converts into steam. The energy for this purpose is taken from the heat energy supplied to the kettle.
As heat is continuously provided to water, more and more water vaporizes and the pressure inside the kettle increases. The spout of the kettle has two thin plates separated by a small gap, which allows the steam to escape. As the steam escapes through the narrow gap, it expands and in the process generates small vortices at the gap, which produces its characteristic whistle. When steam expands, the intermolecular separation further increases hence work is done. The energy of the steam is also converted to audible energy in the form of the whistle.
When water changes state, it does so at constant temperature. Internal energy of a body is proportional to its Kelvin temperature. Thus, the internal energy of the kettle remains constant. According to the first law of thermodynamics,
Here the change in the internal energy is
As the entire system gets hotter, work is done from the evaporation of the water to the whistling of the kettle.
As the base of the kettle absorbs heat and transfers it to water inside the kettle and this is how the kettle maintains its internal energy by heating the water inside it.
Want to see more full solutions like this?
Chapter 15 Solutions
College Physics
Additional Science Textbook Solutions
Biological Science (6th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
Biology: Life on Earth with Physiology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning