Organic Chemistry
5th Edition
ISBN: 9780078021558
Author: Janice Gorzynski Smith Dr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 15.78P
Interpretation Introduction
Interpretation: A stepwise mechanism for the given reaction is to be drawn.
Concept introduction: The general steps involved in the free-radical reaction are stated below:
1. First step is initiation that involves formation of radical.
2. Second step is propagation.
3. Third step is the termination that involves the formation of stable bond.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the presence of a radical initiator (Z•), tributyltin hydride (R3SnH, R = CH3CH2CH2CH2) reduces alkyl halides to alkanes: R′X + R3SnH → R′H + R3SnX. The mechanism consists of a radical chain process with an intermediate tin radical:
This reaction has been employed in many radical cyclization reactions. Draw a stepwise mechanism for the following reaction.
Tributyltin hydride (Bu3SnH) is used synthetically to reduce alkyl halides, replacing a halogen atom with hydrogen. Free-radical initiators promote this reaction, and free-radical inhibitors are known to slow or stop it. Your job is todevelop a mechanism,
When exposed to a radical initiator, the C-H bond in HCC13 will cleave homolytically and undergo
radical addition to alkenes. With this in mind, propose a mechanism for the following reaction:
CCB
0:
HCC13
peroxides
Chapter 15 Solutions
Organic Chemistry
Ch. 15 - Prob. 15.1PCh. 15 - Prob. 15.2PCh. 15 - Prob. 15.3PCh. 15 - Prob. 15.4PCh. 15 - Prob. 15.5PCh. 15 - Problem 15.6 Using mechanism 15.1 as guide, write...Ch. 15 - Prob. 15.7PCh. 15 - Problem 15.8 Which bond in the each compound is...Ch. 15 - Prob. 15.9PCh. 15 - Prob. 15.10P
Ch. 15 - Prob. 15.11PCh. 15 - Prob. 15.12PCh. 15 - Prob. 15.13PCh. 15 - Prob. 15.14PCh. 15 - Prob. 15.15PCh. 15 - Prob. 15.16PCh. 15 - Draw the products of each reaction.
a. b. c.
Ch. 15 - Draw all constitutional isomers formed when each...Ch. 15 - Draw the structure of the four allylic halides...Ch. 15 - Problem 15.20 Which compounds can be prepared in...Ch. 15 - Which CH bond is most readily cleaved in linolenic...Ch. 15 - Prob. 15.22PCh. 15 - Prob. 15.23PCh. 15 - Problem 15.24 When adds to under radical...Ch. 15 - Prob. 15.25PCh. 15 - Prob. 15.26PCh. 15 - Problem 15.27 Draw the steps of the mechanism that...Ch. 15 - Prob. 15.28PCh. 15 - Prob. 15.29PCh. 15 - Prob. 15.30PCh. 15 - Prob. 15.31PCh. 15 - Prob. 15.32PCh. 15 - Prob. 15.33PCh. 15 - Prob. 15.34PCh. 15 - 15.35 What is the major monobromination product...Ch. 15 - Prob. 15.36PCh. 15 - 15.37 What alkane is needed to make each alkyl...Ch. 15 - 15.38 Which alkyl halides can be prepared in good...Ch. 15 - Prob. 15.39PCh. 15 - 15.40 Explain why radical bromination of p-xylene...Ch. 15 - a. What product(s) (excluding stereoisomers) are...Ch. 15 - Prob. 15.42PCh. 15 - 15.43 Draw the products formed when each alkene is...Ch. 15 - 15.44 Draw all constitutional isomers formed when...Ch. 15 - 15.45 Draw the organic products formed in each...Ch. 15 - Prob. 15.46PCh. 15 - 15.47 Treatment of a hydrocarbon A (molecular...Ch. 15 - 15.48 Draw the products formed in each reaction...Ch. 15 - Prob. 15.49PCh. 15 - 15.50 Draw all the monochlorination products that...Ch. 15 - Prob. 15.51PCh. 15 - 15.52 (a) Draw the products (including...Ch. 15 - 15.53 Consider the following bromination: .
a....Ch. 15 - 15.54 Draw a stepwise mechanism for the following...Ch. 15 - Prob. 15.55PCh. 15 - Prob. 15.56PCh. 15 - 15.57 Devise a synthesis of each compound from...Ch. 15 - Prob. 15.58PCh. 15 - Prob. 15.59PCh. 15 - 15.60 Devise a synthesis of each compound using ...Ch. 15 - Prob. 15.61PCh. 15 - Prob. 15.62PCh. 15 - 15.63 As described in Section 9.16, the...Ch. 15 - 15.64 Ethers are oxidized with to form...Ch. 15 - Prob. 15.65PCh. 15 - Prob. 15.66PCh. 15 - 15.67 In cells, vitamin C exists largely as its...Ch. 15 - What monomer is needed to form each...Ch. 15 - Prob. 15.69PCh. 15 - Prob. 15.70PCh. 15 - 15.71 Draw a stepwise mechanism for the following...Ch. 15 - 15.72 As we will learn in Chapter 30, styrene...Ch. 15 - Prob. 15.73PCh. 15 - 15.74 A and B, isomers of molecular formula , are...Ch. 15 - Prob. 15.75PCh. 15 - 15.76 Draw a stepwise mechanism for the...Ch. 15 - Prob. 15.77PCh. 15 - Prob. 15.78PCh. 15 - Prob. 15.79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Peroxides are often added to free-radical reactions as initiators because the oxygen–oxygen bond cleaves homolytically rather easily. For example, the bond-dissociation enthalpy of the O¬O bond in hydrogen peroxide (H¬O¬O¬H) is only 213 kJ>mol (51 kcal>mol). Give a mechanism for the hydrogen peroxide-initiated reaction of cyclopentane with chlorine. The BDE for HO¬Cl is 210 kJ>mol (50 kcal>mol).arrow_forwardThe reaction of methylpropene with HBr, under radical conditions, gives two intermediates. Propose a mechanism for the formation of the two products. Propose a mechanism for the following reaction and use electronic factors to account for the formation of a major product: CH2 CH2Br N-Bromosuccinimide (NBS) ho, CCI4 Draw the structure of an antioxidant, Vitamin E free radical and use resonance structures o account for its stability.arrow_forwardBicyclo-2,5-heptadiene can be prepared in two steps from cyclopentadiene and vinyl chloride. Provide a mechanism for each step.arrow_forward
- Following is a balanced equation for the allylic bromination of propene. CH2==CHCH3 + Br2 h CH2==CHCH2Br + HBr (a) Calculate the heat of reaction, H 0, for this conversion. (b) Propose a pair of chain propagation steps and show that they add up to the observed stoichiometry. (c) Calculate the H 0 for each chain propagation step and show that they add up to the observed H 0 for the overall reaction.arrow_forwardC=CH H20, H2SO4 H9SO4 CH3 Alkynes do not react directly with aqueous acid as do alkenes, but will do so in the presence of mercury(II) sulfate as a Lewis acid catalyst. The reaction occurs with Markovnikov regiochemistry, so the OH group adds to the more highly substituted carbon and the H adds to the less highly substituted carbon. The initial product of the reaction is a vinyl alcohol, also called an enol. The enol immediately rearranges to a more stable ketone via tautomerization. Draw curved arrows to show the movement of electrons in this step of the mechanism. Arrow-pushing Instructions H-OH HO: Hjö: C=CH c=CH Hö Hg Hgarrow_forwardBicyclo-2,5-heptadiene can be prepared in two steps from cyclopentadiene and vinyl chloride. Provide a mechanism for each step. heat C,H,ONa + CH,=CHCI C,H,OH CI Bicyclo-2,5-heptadienearrow_forward
- On standing, 1,3-cyclopentadiene is transformed into a new compound called dicyclopenta- diene, having the molecular formula C10H12. Draw the mechanism of the reaction that forms the product. Use dashed lines to indicate bond formation and curves arrows to show bond movement.arrow_forwardCan someone show the step by step mechanism for this problem. I don't understand where the atoms move and come from.arrow_forwardRadical bromination of cyclohexene using NBS gives 3-bromo-1-cyclohexene. Draw the allylic radical intermediate formed during this reaction, showing both resonance structuresarrow_forward
- Draw an approximate reaction-energy diagram showing the curves for the two possible pathways for ionic addition of HBr to 1-methylcyclohexene. (a) Formation of the major product, 1-bromo-1-methylcyclohexane, and (b) formation of the minor product, 1-bromo-2-methylcyclohexane. Point out how these curves show that 1-bromo-1-methylcyclohexane should be formed fasterarrow_forwardProvide the mechanism and the structure of the products A and B in the given reactions. Explain the advantage of one over the other.arrow_forwardGive the product and mechanism for the following reaction. Be sure to include all mechanism arrows, lone pairs, and formal charges in your mechanism. The product is an alkene.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning