
Concept explainers
(a)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion.
(b)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(c)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(d)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(e)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation state of Group 1 elements are taken to be +1.
- The oxidation state of Group 2 elements are taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
EBK BASIC CHEMISTRY
- (9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception tothe general ionization energy (IE) trend. For the two elements involved, answer the followingquestions. Be sure to cite sources for all physical data that you use.a. (2 pts) Identify the two elements and write their electronic configurations.b. (2 pts) Based on their configurations, propose a reason for the IE trend exception.c. (5 pts) Calculate effective nuclear charges for the last electron in each element and theAllred-Rochow electronegativity values for the two elements. Can any of these valuesexplain the IE trend exception? Explain how (not) – include a description of how IErelates to electronegativity.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't use AIarrow_forward
- please solve this problem by telling me which boxes to check. Thank you in advance!arrow_forwardExplain what characteristics of metalloids are more like metals and which are more like nonmetals, based on Na, Mg, Fe, Cl, and Ar.arrow_forwardplease solve this, and help me know which boxes to check. Thank you so much in advance.arrow_forward
- Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. Describe how electronegativity is illustrated on the periodic table including trends between groups and periods and significance of atom size.arrow_forwardDefine the term “transition.” How does this definition apply to the transition metals?arrow_forwardDescribe how the properties of the different types of elements (metals, nonmetals, metalloids) differ.arrow_forward
- Use a textbook or other valid source to research the physical and chemical properties of each element listed in Data Table 1 using the following as a guideline: Ductile (able to be deformed without losing toughness) and malleable (able to be hammered or pressed permanently out of shape without breaking or cracking) or not ductile or malleable Good, semi, or poor conductors of electricity and heat High or low melting and boiling points Occur or do not occur uncombined/freely in nature High, intermediate, or low reactivity Loses or gains electrons during reactions or is not reactivearrow_forwardProvide the Physical and Chemical Properties of Elements of the following elements listedarrow_forwardQuestions 4 and 5arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





