Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 15.137QP

Consider the equilibrium reaction described in Problem 15.30. A quantity of 2.50 g of PCl5 is placed in an evacuated 0.500-L flask and heated to 250°C. (a) Calculate the pressure of PCl5, assuming it does not dissociate. (b) Calculate the partial pressure of PCl5 at equilibrium. (c) What is the total pressure at equilibrium? (d) What is the degree of dissociation of PCl5? (The degree of dissociation is given by the fraction of PCl5 that has undergone dissociation.)

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The different equilibrium (Kp, Kc) constants should be calculated given the PCl5 dissociation reaction.

Concept Introduction:

Homogeneous equilibrium: A homogeneous equilibrium involved has a everything present in the same phase and same conditions, for example reactions where everything is a gas, or everything is present in the same solution.

Equilibrium constant: Concentration of the products to the respective molar concentration of reactants it is called equilibrium constant. If the K value is less than one the reaction will move to the left side and the K values is higher (or) greater than one the reaction will move to the right side of reaction.

Equilibrium concentration: If Kc and the initial concentration for a reaction and calculate for both equilibrium concentration, and using the (ICE) chart and equilibrium constant and derived changes in respective reactants and products.

Kp and Kc: This equilibrium constants of gaseous mixtures, these difference between the two constants is that Kc is defined by molar concentrations, whereas Kp is defined by the partial pressures of the gasses inside a closed system.

Answer to Problem 15.137QP

The equilibrium constant (Kp and Kc) values are given the statement of (PCl5) homogenous reaction is shown below.

PCl5(g)PCl3+Cl2 Kc=(PCl3)(Cl2)(PCl5)[Product][Reactant]Kp=(PPCl3)(PCl2)(PPCl5)a).Molarmass=1.03, b).PPCl5=0.39atm,c).Ptotal=1.67atm,d).Degreeeofdessociation=62.0%

Explanation of Solution

To find: Calculate the molar mass values and partial pressure (Kc) values for given the statement of PCl5 dissociation reaction.

Calculate and analyze the molar mass and (Kp) values with respective statement (a and b).

Let us considers the (ICE) equilibrium method

Letus consider the given statement (a)We derived the statement(a)The molar mass of PCl5=208.2g/molPCl5(g)PCl3+Cl2 Acoording to the ideal gas equation Pv=nRT---------------[1]Change the above equation (2) and derived partial pressure valuesP=nRTV[2][HereP=Partial pressure of reactantandproduct]n=2.50gm,R=0.08206L×atm/K×mol,T=(275+250=523K),V=0.500LGiventhestatement (b) values are substituted above equation (2)P=nRTV=(2.50g×1mol208.2g0.500L)(0.08206L.atmK.mol)(523K)=(2.50×4.80300.500L)(0.08206×523)=(2.50×9.606)(42.9173)=(24.015)(42.9173)=1.03atm

We derive here equilibrium constant values are PCl5 .

Hare, PCl5(g)PCl3(g)+Cl2(g) Initial (atm): 1.0300Change (atm):  -x+x+xEqilibrium (atm):1.03xxxSolving for the equilibrium constant: Kp=(PPCl3)(PCl2)(PPCl5)-----------[1]The equilibrium pressure values are substituted above the equation (1)Kc=(x)2(1.03x)Kp=1.05atmHence1.05=(x)2(1.03x)[2]Solvedaboveequation(2)x2+1.05x1.08=0x=0.639

The balanced equilibrium equations there are one mole of PCl5 dissociated to produce two moles pf products, if the pressure of the container will not affect above calculation method of (Kp) values. Hence the derived equilibrium constant in terms of showed above.

To find: Calculate the total pressure values and degree of dissociation values for given the statement of PCl5 equilibrium reaction.

Calculate and analyze the total pressure and degree of dissociation values with respective statement (c and d).

The obtained statement (a and d) values are substituted below method, we get the partial pressure values and total pressure values.

Statement (c)PCl5(g)PCl3+Cl2 PCl5(g)=Reactant-ProductvaluesPCl5(g)=1.030.603=0.39atmPtotal=Product-Reactant(AccordingtoICEtablevalues)Ptotal=(1.03x)+x+xPtotal=1.03+0.639=1.67atmStatement (d)(Wederiveddegreee of dessociation)The ICETablevaluesmolarmassvalues=0.639atm1.03atm=0.620The Degreeeofdessociation=62.0%

The given dissociation reaction the respective reactant to give products  (two products) all exists in the different phase  and this equilibrium reaction expression contains different conditions like solid converted into gases phase, so this equilibrium reactions has heterogeneous.   The equilibrium constant can also be represented by Kp, were the “P” partial pressure. The each partial pressure, total and degree of dissociation values are derived given PCl5 equilibrium reaction equation at 2500C as showed above.

Conclusion

The different terms of equilibrium values are derived given the PCl5 dissociation reaction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Strain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Next
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT

Chapter 15 Solutions

Chemistry: Atoms First

Ch. 15.3 - Write equilibrium expressions for each of the...Ch. 15.3 - Write equilibrium expressions for each of the...Ch. 15.3 - Which of the following equilibrium expressions...Ch. 15.3 - Consider the reaction A(s)+B(g)C(s). Which of the...Ch. 15.3 - The following reactions have the indicated...Ch. 15.3 - The following reactions have the indicated...Ch. 15.3 - Using the data from Practice Problem A, determine...Ch. 15.3 - Consider a chemical reaction represented by the...Ch. 15.3 - Write KP expressions for (a) PCl3(g) + Cl2(g) ...Ch. 15.3 - Write KP expressions for...Ch. 15.3 - Write the equation for the gaseous equilibrium...Ch. 15.3 - These diagrams represent closed systems at...Ch. 15.3 - The equilibrium constant, Kc, for the reaction...Ch. 15.3 - For the reaction N2(g)+3H2(g)2NH2(g) KC is 2.3 ...Ch. 15.3 - KP = 2.79 10-5 for the reaction in Practice...Ch. 15.3 - Consider the reaction 2A(l)2B(g) at room...Ch. 15.3 - Prob. 15.3.1SRCh. 15.3 - Prob. 15.3.2SRCh. 15.3 - Prob. 15.3.3SRCh. 15.3 - Kc for the reaction Br2(g) 2Br(g) is 1.1 103 at...Ch. 15.4 - At 375C, the equilibrium constant for the reaction...Ch. 15.4 - The equilibrium constant, Kc, for the formation of...Ch. 15.4 - Calculate KP for the formation of nitrosyl...Ch. 15.4 - Consider the reaction 2AB. The diagram shown on...Ch. 15.4 - The equilibrium constant, KP, for the reaction...Ch. 15.4 - G for the reaction H2(g)+I2(s)2HI(g) is 2.60...Ch. 15.4 - Prob. 8PPBCh. 15.4 - Prob. 8PPCCh. 15.4 - Using data from Appendix 2, calculate the...Ch. 15.4 - Prob. 9PPACh. 15.4 - Kf for the complex ion Ag(NH3)2+ is 1.5 107 at...Ch. 15.4 - Which of the following graphs [(i)(iv)] best shows...Ch. 15.4 - The equilibrium constant, Ksp, for the dissolution...Ch. 15.4 - Calculate G for the process:...Ch. 15.4 - Ksp for Co(OH)2 at 25C is 3.3 10-16 Using this and...Ch. 15.4 - Prob. 10PPCCh. 15.4 - Free Energy and Chemical Equilibrium 15.4.1 For...Ch. 15.4 - The Ksp for iron(III) hydroxide [Fe(OH)3] is 1.1 ...Ch. 15.4 - Prob. 15.4.3SRCh. 15.5 - Kc for the reaction of hydrogen and iodine to...Ch. 15.5 - Calculate the equilibrium concentrations of H2,...Ch. 15.5 - Determine the initial concentration of HI if the...Ch. 15.5 - Consider the reaction A(g) + B(g) C(g). The...Ch. 15.5 - For the same reaction and temperature as in Worked...Ch. 15.5 - Prob. 12PPACh. 15.5 - Prob. 12PPBCh. 15.5 - Prob. 12PPCCh. 15.5 - At elevated temperatures, iodine molecules break...Ch. 15.5 - Aqueous hydrocyanic acid (HCN) ionizes according...Ch. 15.5 - Consider a weak acid, HA, that ionizes according...Ch. 15.5 - Prob. 13PPCCh. 15.5 - A mixture of 5.75 atm of H2 and 5.75 atm of I2 is...Ch. 15.5 - Prob. 14PPACh. 15.5 - Prob. 14PPBCh. 15.5 - Consider the reaction A(g)+B(g)C(s)+D(s). The...Ch. 15.5 - Define equilibrium. Give two examples of a dynamic...Ch. 15.5 - Prob. 15.5.2SRCh. 15.5 - Prob. 15.5.3SRCh. 15.6 - Hydrogen sulfide (H2S) is a contaminant commonly...Ch. 15.6 - For each change indicated, determine whether the...Ch. 15.6 - What can be added to the equilibrium that will (a)...Ch. 15.6 - Consider the reaction A(g)+B(g)C(s)+D(s), of the...Ch. 15.6 - For each reaction, predict in what direction the...Ch. 15.6 - For each reaction, predict the direction of shift...Ch. 15.6 - For the following equilibrium, give an example of...Ch. 15.6 - Prob. 16PPCCh. 15.6 - Factors That Affect Chemical Equilibrium 15.6.1...Ch. 15.6 - Indicate in which direction the following...Ch. 15.6 - Prob. 15.6.3SRCh. 15.6 - The diagrams show equilibrium mixtures of A2, B2,...Ch. 15 - The Ka for hydrocyanic acid (HCN) is 4.9 10 l0....Ch. 15 - Determine the concentrations of Pb2+ and I in a...Ch. 15 - Determine the Ka for a weak acid if a 0.10-M...Ch. 15 - Prob. 15.4KSPCh. 15 - Define equilibrium. Give two examples of a dynamic...Ch. 15 - Which of the following statements is collect about...Ch. 15 - Consider the reversible reaction A B. Explain how...Ch. 15 - What is the law of mass action?Ch. 15 - Briefly describe the importance of equilibrium in...Ch. 15 - Define reaction quotient. How does it differ from...Ch. 15 - Prob. 15.7QPCh. 15 - Write the equation for the reaction that...Ch. 15 - Prob. 15.9QPCh. 15 - The equilibrium constant for the reaction...Ch. 15 - Prob. 15.11QPCh. 15 - The equilibrium constant for the reaction...Ch. 15 - Prob. 15.13QPCh. 15 - Prob. 15.14QPCh. 15 - Prob. 15.15QPCh. 15 - Prob. 15.16QPCh. 15 - Prob. 15.17QPCh. 15 - Write equilibrium constant expressions for Kc and...Ch. 15 - Write the equilibrium constant expressions for Kc...Ch. 15 - Prob. 15.20QPCh. 15 - Prob. 15.21QPCh. 15 - Prob. 15.22QPCh. 15 - Computational Problems 15.23 The equilibrium...Ch. 15 - Prob. 15.24QPCh. 15 - The equilibrium constant KP for the reaction is...Ch. 15 - Prob. 15.26QPCh. 15 - Prob. 15.27QPCh. 15 - Prob. 15.28QPCh. 15 - Prob. 15.29QPCh. 15 - The equilibrium constant Kp for foe reaction is...Ch. 15 - Ammonium carbamate (NH4CO2NH2) decomposes as...Ch. 15 - Prob. 15.32QPCh. 15 - Consider the equilibrium If nitrosyl bromide...Ch. 15 - Prob. 15.34QPCh. 15 - The following equilibrium constants have been...Ch. 15 - The following equilibrium constants were...Ch. 15 - At a certain temperature, the following reactions...Ch. 15 - Prob. 15.38QPCh. 15 - The equilibrium constant for the reaction A B is...Ch. 15 - Prob. 15.40QPCh. 15 - Explain why Equation 15.6 is of great importance...Ch. 15 - Fill in the missing entries in the following...Ch. 15 - Computational Problems 15.43 The aqueous reaction...Ch. 15 - For the autoionization of water at 25C,...Ch. 15 - Consider the following reaction at 25C....Ch. 15 - Prob. 15.46QPCh. 15 - (a) Calculate G and KP for the following...Ch. 15 - The equilibrium constant (KP) for the reaction...Ch. 15 - Consider the decomposition of calcium carbonate....Ch. 15 - The equilibrium constant KP for the reaction CO(g)...Ch. 15 - Prob. 15.51QPCh. 15 - Prob. 15.52QPCh. 15 - Prob. 15.53QPCh. 15 - Conceptual Problems 15.54 A and B react to form...Ch. 15 - If Kc. = 2 for the reaction A2 + B2 2AB at a...Ch. 15 - Prob. 15.1VCCh. 15 - Prob. 15.2VCCh. 15 - Prob. 15.3VCCh. 15 - Prob. 15.4VCCh. 15 - Review Questions Outline the steps for calculating...Ch. 15 - Prob. 15.57QPCh. 15 - Prob. 15.58QPCh. 15 - Prob. 15.59QPCh. 15 - The dissociation of molecular iodine into iodine...Ch. 15 - The equilibrium constant Kc for the decomposition...Ch. 15 - Consider the following equilibrium process at...Ch. 15 - Prob. 15.63QPCh. 15 - Prob. 15.64QPCh. 15 - Prob. 15.5VCCh. 15 - Prob. 15.6VCCh. 15 - Prob. 15.7VCCh. 15 - Prob. 15.8VCCh. 15 - Prob. 15.9VCCh. 15 - Prob. 15.10VCCh. 15 - Prob. 15.11VCCh. 15 - Prob. 15.12VCCh. 15 - Prob. 15.65QPCh. 15 - Prob. 15.66QPCh. 15 - Prob. 15.67QPCh. 15 - Conceptual Problems 15.68 Which of the following...Ch. 15 - For which of the following reactions will a change...Ch. 15 - Which of the following equilibria will shift to...Ch. 15 - Which of the following will cause the equilibrium...Ch. 15 - Consider the following equilibrium system...Ch. 15 - Heating solid sodium bicarbonate in a closed...Ch. 15 - Consider the following equilibrium systems....Ch. 15 - What effect does an increase in pressure have on...Ch. 15 - Prob. 15.76QPCh. 15 - Consider the following equilibrium process....Ch. 15 - Prob. 15.78QPCh. 15 - Consider the following equilibrium reaction in a...Ch. 15 - Consider the gas-phase reaction...Ch. 15 - Prob. 15.81QPCh. 15 - Prob. 15.82QPCh. 15 - Prob. 15.83QPCh. 15 - The simplified equation representing the binding...Ch. 15 - Prob. 15.85QPCh. 15 - ADDITIONAL PROBLEMS 15.86 Consider the following...Ch. 15 - The equilibrium constant Kp for the reaction...Ch. 15 - For a reaction with a negative G value, which of...Ch. 15 - Carbon monoxide (CO) and nitric oxide (NO) are...Ch. 15 - Consider the following reacting system....Ch. 15 - At a certain temperature and a total pressure of...Ch. 15 - The decomposition of ammonium hydrogen sulfide...Ch. 15 - Consider the reaction 2NO(g)+O2(g)2NO2(g) At 430C,...Ch. 15 - In the Mond process for the purification of...Ch. 15 - Consider the reaction N2(g)+O2(g)2NO(g) Given that...Ch. 15 - Prob. 15.96QPCh. 15 - A mixture of 0.47 mole of H2 and 3.59 moles of HCl...Ch. 15 - Prob. 15.98QPCh. 15 - The following reaction represents the removal of...Ch. 15 - Prob. 15.100QPCh. 15 - Prob. 15.101QPCh. 15 - Calculate the equilibrium pressure of CO2 due to...Ch. 15 - Prob. 15.103QPCh. 15 - Consider the gas-phase reaction between A2 (green)...Ch. 15 - Prob. 15.105QPCh. 15 - The following diagram represents a gas-phase...Ch. 15 - The formation of SO3 from SO2 and O2 is an...Ch. 15 - Calculate the pressure of O2 (in atm) over a...Ch. 15 - The following reaction was described as the cause...Ch. 15 - Prob. 15.110QPCh. 15 - Calculate G and Kp for the following processes at...Ch. 15 - Prob. 15.112QPCh. 15 - The equilibrium constant Kp for the following...Ch. 15 - Prob. 15.114QPCh. 15 - Prob. 15.115QPCh. 15 - Prob. 15.116QPCh. 15 - Prob. 15.117QPCh. 15 - Prob. 15.118QPCh. 15 - Prob. 15.119QPCh. 15 - Prob. 15.120QPCh. 15 - The equilibrium constant Kc for the reaction...Ch. 15 - For reactions earned out under standard-state...Ch. 15 - When a gas was heated under atmospheric...Ch. 15 - Prob. 15.124QPCh. 15 - The equilibrium constant Kc for the following...Ch. 15 - The equilibrium constant (KP for the formation of...Ch. 15 - Prob. 15.127QPCh. 15 - Prob. 15.128QPCh. 15 - Prob. 15.129QPCh. 15 - In the gas phase, nitrogen dioxide is actually a...Ch. 15 - A 2.50-mole sample of NOCl was initially in a...Ch. 15 - About 75% of hydrogen for industrial use is...Ch. 15 - Photosynthesis can be represented by...Ch. 15 - Consider the decomposition of ammonium chloride at...Ch. 15 - At 25C, the equilibrium partial pressures of NO2...Ch. 15 - In 1899 the German chemist Ludwig Mond developed a...Ch. 15 - Consider the equilibrium reaction described in...Ch. 15 - Consider the equilibrium system3AB. Sketch the...Ch. 15 - The vapor pressure of mercury is 0.0020 mmHg at...Ch. 15 - Large quantities of hydrogen are needed for the...Ch. 15 - Prob. 15.141QPCh. 15 - At 25C. a mixture of NO2 and N2O4 gases are m...Ch. 15 - Prob. 15.143QPCh. 15 - Heating copper (II) oxide at 400C does not produce...Ch. 15 - The equilibrium constant Kc for the reaction...Ch. 15 - The dependence of the equilibrium constant of a...Ch. 15 - Prob. 15.147QPCh. 15 - The following diagram shows the variation of the...Ch. 15 - The Kp for the reaction SO2Cl2(g)SO2(g)+Cl2(g) is...Ch. 15 - Derive the equation G=RTlnQK where Q is the...Ch. 15 - Prob. 15.151QPCh. 15 - Prob. 15.152QPCh. 15 - Prob. 15.153QPCh. 15 - Industrial production of ammonia from hydrogen and...Ch. 15 - For which of the following reactions is Kc equal...Ch. 15 - At present, the World Anti-Doping Agency has no...Ch. 15 - (a) Use the vant Hoff equation in Problem 15.146...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY