
Hydrogen sulfide (H2S) is a contaminant commonly found m natural gas. It is removed by reaction with oxygen to produce elemental sulfur.
For each of the following scenarios, determine whether the equilibrium will shift to the right, shift to the left, or neither: (a) addition of O2(g), (b) removal of H2S(g), (c) removal of H2O(g), and (d) addition of S(s).

Interpretation:
The equilibrium directions should be identified for the given Hydrogen Sulfide (H2S) equilibrium reaction with different conditions.
Concept Introduction:
Concept of equilibrium process: Any system at equilibrium subject to change in concentration, temperature, volume or pressure then the system readjusts itself to partly counteract the effect of the applied change and new equilibrium is formed. This equilibrium can be explained in a simple way, a system equilibrium is distributed the system will adjust itself in such a way that the effect of the change will be reduced.
Le Chatelier's Principle: A change in one of the variables that describe a system at equilibrium produces a shift in the position of the equilibrium that counteracts the effect of this change. In other words the closed system is an increase in pressure; the equilibrium will shift towards the sides of the reaction with some moles of gas. The decrease in pressure the equilibrium will shift towards the side of the reaction with high moles of gas.
Forward Reaction: This type of reaction has involved irreversible, if obtained product cannot be converted back in to respective reactants under the same conditions.
Backward Reaction: This type of reaction process involved a reversible, if the products can be converted into a back to reactants.
Homogeneous equilibrium: A homogeneous equilibrium involved has an everything present in the same phase and same conditions, for example reactions where everything is a gas, or everything is present in the same solution.
Answer to Problem 15.15WE
The equilibrium directions for given the statements of addition, removal and temperature reactions are given below.
Explanation of Solution
To Identify: Given the equilibrium reactions (a and b) addition, removal of (O2 and H2S) should be analyzed.
Given both reactions (a and b) equilibrium directions must be analyzed.
Before identification of equilibrium directions we writing the reaction quotient (Qc) expression fallowed.
Here (S) will not appear in the expression, because sulfur is solid.
Let us consider the reaction process, Le Chatelier's Principle to determine which of the following process will cause the equilibrium shift to the right or left.
The given equilibrium reaction (
Analyzing for reaction (a): The given reaction if we addition of sufficient amount (O2) this process will undergoes for right side, process will be re-established in such a way that Qc is again to the equilibrium constant, highest mole amount of product (S) will form. Hence the system of equilibrium shifted to the right side to established concentration equilibrium.
Analyzing for reaction (b): The given reaction if we addition of sufficient amount hydrogen sulfide this process will undergoes for left side, process will be re-established in such a way that Qc is again to the equilibrium constant, lowest amount of product (S) will form. Hence the system of equilibrium shifted to the left side to established concentration equilibrium.
Explanation:
To Identify: Given the equilibrium reactions (c and d) addition, removal of (
Given both reactions (c and d) equilibrium directions must be analyzed.
Here also we will identify given the reaction process, Le Chatelier's Principle to determine which of the following process will cause the equilibrium shift to the right or left.
Reaction (c): Above the removal process of (
Reaction (b): The given reaction if we addition of sufficient amount (
The equilibrium directions were identified given the hydrogen sulfide (H2S) addition and removal reaction with respective conditions.
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry: Atoms First
- Why do we analyse salt?arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H H CH3OH, H+ H Select to Add Arrows H° 0:0 'H + Q HH ■ Select to Add Arrows CH3OH, H* H. H CH3OH, H+ HH ■ Select to Add Arrows i Please select a drawing or reagent from the question areaarrow_forwardWhat are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forward
- A common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forwardPredict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forward
- Given a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forwardFour liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forward
- Determine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forwardIdeally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





