Principles of Geotechnical Engineering (MindTap Course List)
Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 15, Problem 15.12P
To determine

Find the factor of safety Fs with respect to sliding.

Expert Solution & Answer
Check Mark

Answer to Problem 15.12P

The factor of safety Fs with respect to sliding is 2.25_.

Explanation of Solution

Given information:

The slope with an inclination β is 55°.

The unit weight γ of the soil is 121lb/ft3.

The angle of friction ϕ is 17°.

The cohesion c is 1,200lb/ft2.

The height (H) of the retaining wall is 45 ft.

Calculation:

Trial 1:

Consider the factor of safety as 2.

Determine the cohesion cd develop along the potential failure surface using the relation.

cd=cFs

Substitute 1,200lb/ft2 for c and 2.0 for Fs.

cd=1,2002.0=600lb/ft2

Determine the angle ϕd of friction that develops along the potential failure surface using the relation.

ϕd=tan1(tanϕFs)

Substitute 17° for ϕ and 2.0 for Fs.

ϕd=tan1(tan17°2.0)=tan1(0.153)=8.69°

Determine height of the slope that will have a factor of safety of 2.0 against sliding using the formula.

Hcr=4cdγ[sinβcosϕd1cos(βϕd)]

Substitute 600lb/ft2 for cd, 121lb/ft3 for γ, 55° for β, and 8.69° for ϕd.

Hcr=4(600)121[sin55°cos8.69°1cos(55°8.69°)]=19.835(0.810.31)=51.83ft

The height of the retaining wall is not equal to the calculated height of the wall.

51.83ft45ft

Hence, the assumption is incorrect.

Trial 2:

Consider the factor of safety as 2.5.

Determine the cohesion cd develop along the potential failure surface using the relation.

cd=cFs

Substitute 1,200lb/ft2 for c and 2.5 for Fs.

cd=1,2002.5=480lb/ft2

Determine the angle ϕd of friction that develops along the potential failure surface using the relation.

ϕd=tan1(tanϕFs)

Substitute 17° for ϕ and 2.5 for Fs.

ϕd=tan1(tan17°2.5)=tan1(0.1222)=6.97°

Determine height of the slope that will have a factor of safety of 2.0 against sliding using the formula.

Hcr=4cdγ[sinβcosϕd1cos(βϕd)]

Substitute 480lb/ft2 for cd, 121lb/ft3 for γ, 55° for β, and 6.97° for ϕd.

Hcr=4(480)121[sin55°cos6.97°1cos(55°6.97°)]=15.867(0.810.33)=38.94ft

The height of the retaining wall is not equal to the calculated height of the wall.

38.94ft45ft

Hence, the assumption is incorrect.

Trial 3:

Consider the factor of safety as 2.25.

Determine the cohesion cd develop along the potential failure surface using the relation.

cd=cFs

Substitute 1,200lb/ft2 for c and 2.25 for Fs.

cd=1,2002.25=533.33lb/ft2

Determine the angle ϕd of friction that develops along the potential failure surface using the relation.

ϕd=tan1(tanϕFs)

Substitute 17° for ϕ and 2.25 for Fs.

ϕd=tan1(tan17°2.25)=tan1(0.136)=7.74°

Determine height of the slope that will have a factor of safety of 2.25 against sliding using the formula.

Hcr=4cdγ[sinβcosϕd1cos(βϕd)]

Substitute 533.33lb/ft2 for cd, 121lb/ft3 for γ, 55° for β, and 7.74° for ϕd.

Hcr=4(533.33)121[sin55°cos7.74°1cos(55°7.74°)]=17.631(0.8120.32)=44.74ft45ft

The height of the retaining wall is equal to the calculated height of the wall.

45ft=45ft

Thus, the factor of safety with respect to sliding is 2.25_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
D Ø A vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. y a b B The magnitude of the tension force in cable BE, TBE = KN ® F® Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BF, TBF = KN The x-component of the reaction at joint A, Ax The y-component of the reaction at joint A, A, ®®® The z-component of the reaction at joint A, Az = = KN = KN KN
(10 points) Problem 4. Suppose only through traffic is allowed on an intersection approach, and traffic arrive at a constant rate of 400 veh/h. Their effective green time is set to 15 seconds. Cycle length is 60 seconds. Estimate the average delay for that approach. Use a saturation flow rate of 1750 veh/h; D/D/1 queuing. Centenniam ad) of gy dov yasm wof ni emil
A vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. D C a B Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BE, TBE = KN ☑ The magnitude of the tension force in cable BF, TBF = KN The x-component of the reaction at joint A, Ax = ☑ KN The y-component of the reaction at joint A, A, = KN The z-component of the reaction at joint A, Az = KN ☑
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning