Principles of Geotechnical Engineering (MindTap Course List)
Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 15, Problem 15.27P
To determine

Find the minimum factor of safety Fs using the Bishop and Morgenstern’s method.

Expert Solution & Answer
Check Mark

Answer to Problem 15.27P

The the minimum factor of safety Fs using the Bishop and Morgenstern’s method is 1.19_.

Explanation of Solution

Given information:

The height (H) of the slope is 30 m.

The inclination β of a slope (3:1slope) is 18.43°.

The unit weight γ is 18kN/m3.

The angle of friction ϕ is 23°.

The cohesion c is 27kN/m2.

The value non-dimensional quantity ru is 0.5.

Calculation:

Determine the minimum factor of safety Fs from Table (15.5), using the procedure as follows:

  • Step 1. Obtain the values of angle of friction, inclination of a slope, and the value of cγH
  • Step 2. Obtain the value of nondimensional quantity.
  • Step 3. Refer Table (15.5) “Values of m and n for cγH=0” in the text book. Obtain the values of m and n for D=1,1.25,and1.5.
  • Step 4. calculate the factor of safety value, using the values of m and n for each value of D.
  • Finally, the required value of factor of safety is the smallest one obtained in step 4.

Trial 1:

Determine the value of cγH.

Substitute 27kN/m2 for c, 18kN/m3 for γ, and 30 m for H.

cγH=2718(30)=0.05

Refer Table (15.5d) “Stability coefficients m and n for cγH=0.05 and D=1.00” in the text book.

Take the stability coefficient m as 2.014 when the angle of friction ϕ is 22.5°.

Take the stability coefficient m as 2.193 when the angle of friction ϕ is 25°.

Determine the stability coefficient m when the angle of friction ϕ is 23° using the interpolation.

m=(2322.5)(2.1932.014)(2522.5)+2.014=2.049

Take the stability coefficient n as 1.568 when the angle of friction ϕ is 22.5°.

Take the stability coefficient n as 1.757 when the angle of friction ϕ is 25°.

Calculate the stability coefficient n when the angle of friction ϕ is 23° using the interpolation.

n=(2322.5)(1.7571.568)(2522.5)+1.568=1.606

Calculate the factor of safety using the formula.

Fs=mnru

Substitute 2.049 for m, 1.606 for n, and 0.5 for ru.

Fs=2.0491.606(0.5)=1.25

Trial 2:

Refer Table (15.5e) “Stability coefficients m and n for cγH=0.05 and D=1.25” in the text book.

Take the stability coefficient m as 2.024 when the angle of friction ϕ is 22.5°.

Take the stability coefficient m as 2.222 when the angle of friction ϕ is 25°.

Determine the stability coefficient m when the angle of friction ϕ is 23° using the interpolation.

m=(2322.5)(2.2222.024)(2522.5)+2.024=2.064

Take the stability coefficient n as 1.690 when the angle of friction ϕ is 22.5°.

Take the stability coefficient n as 1.897 when the angle of friction ϕ is 25°.

Determine the stability coefficient n when the angle of friction ϕ is 23° using the interpolation.

n=(2322.5)(1.8971.690)(2522.5)+1.690=1.731

Determine the factor of safety using the formula.

Fs=mnru

Substitute 2.064 for m, 1.731 for n, and 0.5 for ru.

Fs=2.0641.731(0.5)=1.19

Trial 3:

Refer Table (15.5f) “Stability coefficients m and n for cγH=0.05 and D=1.50” in the text book.

Take the stability coefficient m as 2.234 when the angle of friction ϕ is 22.5°.

Take the stability coefficient m as 2.467 when the angle of friction ϕ is 25°.

Calculate the stability coefficient m when the angle of friction ϕ is 23° using the interpolation.

m=(2322.5)(2.4672.234)(2522.5)+2.234=2.281

Take the stability coefficient n as 1.937 when the angle of friction ϕ is 22.5°.

Take the stability coefficient n as 2.179 when the angle of friction ϕ is 25°.

Calculate the stability coefficient n when the angle of friction ϕ is 23° using the interpolation.

n=(2322.5)(2.1791.937)(2522.5)+1.937=1.985

Calculate the factor of safety using the formula.

Fs=mnru

Substitute 2.281 for m, 1.985 for n, and 0.5 for ru.

Fs=2.2811.985(0.5)=1.29

The required value of factor of safety is the smallest one obtained from trial 2.

Thus, the minimum factor of safety Fs using the Bishop and Morgenstern’s method is 1.19_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are an engineer designing an aeration tank for a wastewater treatment plant receiving municipal waste. The activated sludge system (aeration tank and secondary clarifier) you design needs to remove 85% of the incoming BODs from the primary effluent, giving a final concentration of 30.0 mg BOD5/L exiting the system. Your design will maintain a concentration of 2500 mg VSS/L and F/M ratio of 0.5 g BOD/g VSS d in the aeration tank. In an effort to keep the waste activated sludge low in water, only about 0.1% of the primary effluent flow (Q) exits the WAS line. The secondary effluent has a flow rate of 9990 m³/d. What volume (in m³) will the aeration tank need to be? Write out all equations and state any assumptions as needed. Primary effluent: Aeration tank V, X, S Secondary clarifier Secondary effluent: Q. Xo. So Qe, Xe, S 0 po RAS line: Q, X., S Activated sludge control volume WAS line: Qw, X, S
Aum A waste incinerator stack emits 27,027 kg/yr of cadmium and has an effective stack might of 100 m. The wind speed is 5 m/s at an anemometer located at 10 m. It is a clear sunny day with the sun nearly overhead (Class B conditions). a. Calculate the ground-level cadmium concentration (in ug/m³) at a distance of 2 km directly downwind? [Refer to tables in the textbook to help with this problem] What is the concentration of cadmium (in µg/m³) inside of a house at the location in part (a) after two hours? Note that the initial concentration of cadmium in the house was zero, there are 0.25 air changes per hour (ach), there is no source of cadmium inside the house, and cadmium is considered a conservative pollutant.
6. A simply supported beam is subjected to uniformly distributed loads: a service dead load WD = 5 kips/ft and a service live load w₁ =7 kips/ft. Use the load combination w₁ = 1.2WD + 1.6WL. Note that the shear force is expressed as V₂ = w₁ (-/-- x) where x is the distance from a support. (65pts total) The beam also has the following properties. f = 4ksi, fy = fyt = 60 ksi, b = 18 in, h = 26 in, d = 24.5 in, 20ft No. 4 bars, U-stirrups used, Normalweight concrete (1) Calculate the required spacing of stirrups. (15pts) (2) Calculate the maximum spacing. Also, determine the location along the beam where the maximum spacing can be applied (i.e., the distance from support). (10pts) (3) Show the stirrup designs along with the shear force diagram. Indicate the numbers and spacings of stirrups. A transition between the required spacing and the maximum spacing is unnecessary. (15pts) (4) Assume the live load decreases, and, as a result, the factored shear force is 30 kips. Discuss whether…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning