EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.7, Problem 38P
Atmospheric air at a pressure of 1 atm and dry-bulb temperature of 30°C has a relative humidity of 80 percent. Using the psychrometric chart, determine (a) the wet-bulb temperature, (b) the humidity ratio, (c) the enthalpy, (d) the dew-point temperature, and (e) the water vapor pressure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Moist air at 35 °C and 70% relative humidity, passing through an evaporator of a refrigeration system and cooling to 20 °C. What is the relative humidity of cooled air?
A sample of outdoor air (Point 1) has a dry-
bulb and dewpoint temperature of 32°C and
24°C, respectively. It is mixed with another air
(Point 2) with 50% relative humidity and a
specific humidity of 0.0078 kgy/kga. If the
mass of outdoor air (m1) amounts to 40% of
the mixed air ( m3 ), determine:
1. Specific humidity at point 1 in kgy/kga-
2. Enthalpy at point 1 in kJ/kg.
3. Relative humidity at point 1 in %.
4. Dry-bulb temperature at point 2 in °C.
5. Enthalpy at point 2 in kJ/kg.
6. Specific volume of air at point 2 in
m3/kg.
7. Dry-bulb temperature of the mixture
(point 3) in °C.
8. Specific humidity of the mixture (point
3) in kgy/kga-
9. Enthalpy of the mixture (point 3) in
kJ/kg.
10. Dewpoint temperature of the mixture
(point 3) in °C.
Ambient air is at a pressure of 100 kPa, dry bulb temperature of 300C and 60% relative humidity. The
saturation pressure of water at 300C is 4.24 kPa. The specific humidity of air (in g/ kg of dry air) is
(correct to two decimal places).
Chapter 14 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A tank contains 22 kg of dry air and 0.2 kg of water vapor at 30 °C and 91 kPa total pressure. Determine (1) the specific humidity. (2) the relative humidity. (3) the volume of the tank.arrow_forward(2) Moist air at a dry bulb temperature of 25°C has a relative humidity of 50 per cent when the barometric pressure is 101.4 kPa. Determine (a) the partial pressures of water vapor and dry air, (b) the dew point temperature, (c) the specific humidity, (d) the specific volume, and (e) the enthalpy. Ans. (a) 1.5855 kPa, 99.81 kPa; (b) 13.9°C, (c) 0.00988 kg/kg, (d) 0.857 cu m/kg, (e) 50.32 kJ/kgarrow_forwardDefine the range of permissible values for the barometric pressure, relative humidity, and temperature in your environment.arrow_forward
- 12 bales of cotton, each weighing 486 lb, were held for conditioning in a humid warehouse kept at a relative humidity of 95%. Calculate the total mass of water, in lb, held within these bales at the end of the conditioning period.arrow_forwardthe maximum amount of water vapor in air at 20c is 15.0 g/kg. If the relative humidity is 60%, what is the specific humidity of this air?arrow_forwardUsing the psychrometric chart, for atmospheric air at 1 atm. Dry-bulb Temperature = 23 degrees C Relative humidity = 50 % Determine the Wet-bulb Temperature in degrees Carrow_forward
- Conditioned air at 13°C and 90 percent relative humidity is to be mixed with outside air at 34°C and 40 percent relative humidity at 1 atm. If it is desired that the mixture has a relative humidity of 60 percent, determine (a) the ratio of the dry air mass flow rates of the conditioned air to the outside air, (b) the temperature of the mixture, and (c) check your results by the psychrometric chart. Note: do not use the psychrometric chart for calculation.arrow_forwardA sample of air has a dry-bulb temperature of 30 °C and a wet-bulb temperature of25 °C. The barometric pressure is 101 kPa. Calculate:(a) the humidity ratio if this air is adiabatically saturated, (b) the enthalpy of the air if it is adiabatically saturated, (c) the humidity ratio of the sample (c) the humidity ratio of the sample (e) the relative humidityarrow_forwardAn air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and anevaporative cooler. Air enters the heating section at 14°C and 60 percent relative humidity at a rate of 30m3/min, and it leaves the evaporative cooler at 25°C and 45 percent relatively humidity. Determine (a) thetemperature and relative humidity of the air when it leaves the heating section, (b) the rate of heat transfer in theheating section, and (c) the rate of water added to air in the evaporative cooler.arrow_forward
- The air in a room has a dry-bulb temperature of 22°C and a wet-bulb temperature of 16°C. Assuming a pressure of 100 kPa, determine (a) the specific humidity, (b) the relative humidity, and (c) the dew-point temperature.arrow_forwardMoist air initially at 120 °C, 3 bar, and 60% relative humidity is contained in a 4-m³ closed, rigid tank. The tank contents are cooled. Determine the heat transfer, in kJ, if the final temperature in the tank is 50 °C. (Note: The gas constant of water vapor is R = 0.4614 kJ/kg K: gas constant of air is R = 0.287 kJ/kg K)arrow_forwardUsing the standard tables (Appendix C, Tables C-1 and C-2), determine the relative humidity and dew-point temperature if the dry-bulb thermometer reads 22°C and the wet-bulb thermometer reads 16°C. How would the relative humidity and dew point change if the wet-bulb reading were 19°C?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY