Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible. 68. The constant-density half cylinder x 2 + z 2 = a 2 , − h / 2 ≤ y ≤ h / 2 , z ≥ 0
Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible. 68. The constant-density half cylinder x 2 + z 2 = a 2 , − h / 2 ≤ y ≤ h / 2 , z ≥ 0
Mass and center of massLet S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes (see Section 13.6) are
M
y
z
=
∬
S
x
ρ
(
x
,
y
,
z
)
d
S
,
M
x
z
=
∬
S
y
ρ
(
x
,
y
,
z
)
d
S
, and
M
x
y
=
∬
S
z
ρ
(
x
,
y
,
z
)
d
S
. The coordinates of the center of mass of the shell are
x
¯
=
M
y
z
m
,
y
¯
=
M
x
z
m
,
z
¯
=
M
x
y
m
, where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY