ENGR.MECH.: DYNAMICS-EBOOK>I<
14th Edition
ISBN: 9781292088785
Author: HIBBELER
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.4, Problem 52P
The 50-lb crate is given a speed of 10ft/s in t = 4 s starting from rest. If the acceleration is constant, determine the power that must be supplied to the motor when t = 2 s. The motor has an efficiency ɛ = 0.65. Neglect the mass of the pulley and cable.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 5.27 kg collar B rests on the frictionless arm AA! The collar is held in place by the rope attached to drum D and rotates about O in a horizontal plane. The
linear velocity of the collar B is increasing according to v = 0.2 t2 where v is in m/s and tis in seconds. Find the tension in the rope and the force of the bar on
.the collar if 5 s,r= 0.558 m and 0 = 58°
A
A'
D
At the instant shown the 40 kg block A is moving down the plane, while
being attached to the 8 kg block B. If the coefficient of kinetic friction
between the block and the incline and other surface is µs = 0.2 and µx =
0.15, determine the acceleration of block B, and the tension in the cord.
Neglect the mass of the pulleys and cables.
The 300-kg bar B, originally at rest, is being towed over a series of small
rollers. Determine the force in the cable when t = 5s, if the motor M is
drawing in the cable for a short time at a rate of v = (0.47²) m/s, where t is in
seconds (0 <= t<= 6 s). How far does the bar move in 5s? Neglect the mass
of the cable, pulley, and the rollers.
M
B
Chapter 14 Solutions
ENGR.MECH.: DYNAMICS-EBOOK>I<
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2/ The 1-kg slider starts from rest at position 1 and it moves up the incline under the action of constant force P = 55 N cause the slider to have a speed v2 = 0.5 m/s at position 2. Neglect friction, and determine the spring constant k. Take the angle 0 = 18°. 200 mm 200 mm 250 mm 250 mmarrow_forwardThe 150-lb car of an amusement partk ride is connected to a rotating telescopic boom. When r = 15 ft, the car is moving on a horizontal circular path with a speed of 30 ft/s. If the boom is shortened at a rate of 3 ft/s, determine the speed of the car when r = 10 ft. Also, find the work done by the axial for F along the boom. Neglect the size of the car and the mass of the boom.arrow_forwardThe 50 lb crate is given a speed of 10 ft/s in t = 4 s starting from rest. If the acceleration is constant, determine the power that must be supplied to the motor when t = 2 s. The motor has an efficiency 1 =0.65. Neglect the mass of the pulley and cable. Determine the power that must be supplied to the motor when t=2 s . Express your answer in units of horsepower to three significant figures. Should correct (gpt/ai wrong answer not allowed)arrow_forward
- The motor M is at rest when someone flips a switch and it starts pulling in the rope. The acceleration of the rope is uniform and such that it takes 0.50 s to achieve a retraction rate of 7.00 ft/s. Determine the tension in the rope during initial 0.50 s. The cargo C weighs 2576 lb., the weight of the ropes and pulleys is negligible, and friction in the pulleys is negligible. Note: answer to be in pounds (Ib). motor M cargo Carrow_forward= The 2-kg pendulum bob moves in the vertical plane with a velocity of 10 m/s when 0 30°. Determine the initial tension in the cord and also at the instant the bob reaches u 60°. Neglect the size of the bob. (Use principle of work and energy to calculate Ve=60°). 4 2 m =arrow_forwardThe 56.28 kg crate is hoisted up the 0 = 27° incline by the pulley system and motor M. If the crate starts from rest and, by constant acceleration, attains a speed of 8.17 m/s after traveling 7.84 m along the plane, determine the supplied power to the motor if the crate has moved 8 m and the coefficient of kinetic friction between the plane and the crate is Hk = 0.3. Neglect friction along the plane. The motor has an efficiency of 0.691. Marrow_forward
- A freight elevator, including its load, has a mass of 1.1 Mg. It is prevented from rotating due to the track and wheels mounted along its sides. If the motor M develops a constant tension T = 6.9 kN in its attached cable, determine the velocity of the elevator when it has moved upward 7.2 m starting from rest. Neglect the mass of the pulleys and cables.arrow_forwardDetermine the force acting on the cylinder at t = 3 s.arrow_forwardThe 501-kg elevator starts from rest and travels upward with a constant acceleration a. = 3.6 m/s2. Determine the power output in kW of the motor M when t = 5 s. Neglect the mass of the pulleys and cable.arrow_forward
- The 50-lb crate is subjected to the force F = 40 lb. The coefficient of kinetic friction between the crate and the ground is µk = 0.2. If the crate is initially moving to the right with a velocity of 3 ft/s, determine A) The speed of the block when t = 8 s. B) The power developed by force F at t = 8 s.arrow_forwardA frictionless spring with a 4-kg mass can be held stretched 1.8 meters beyond its natural length by a force of 80 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 0.5 m/sec, find the position of the mass after t seconds. metersarrow_forwardA constant force of ''F'' acts on a mass as shown. The mass starts its motion from rest at position 1, the unstretched length of the spring is 250 mm, and the spring modulus is k=1,5 k?/m. Neglecting the friction, determine the required force ''F'' to cause the 2−kg mass to have a speed of v2=1,5 m/s at position 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY