ENGR.MECH.: DYNAMICS-EBOOK>I<
14th Edition
ISBN: 9781292088785
Author: HIBBELER
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 3P
If it is originally at rest, determine the distance it slides in order to attain a speed of 6 m/s. The coefficient of kinetic friction between the crate and the surface is μk = 0.2.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule09:15
Students have asked these similar questions
The conveyor belt is moving at 4 m/s. If the coefficient of static friction between the conveyor and the 10-kg package B is ms = 0.2, determine the shortest time the belt can stop so that the package does not slide on the belt.
The 56.28 kg crate is hoisted up the 0 = 27° incline by
the pulley system and motor M. If the crate starts from
rest and, by constant acceleration, attains a speed of
8.17 m/s after traveling 7.84 m along the plane,
determine the supplied power to the motor if the crate
has moved 8 m and the coefficient of kinetic friction
between the plane and the crate is Hk = 0.3. Neglect
friction along the plane. The motor has an efficiency
of 0.691.
M
The conveyor belt is moving downward at 5 m/s. If the coefficient of static friction between the conveyor and the
12-kg package B is uk = 0.71, determine the shortest time the belt can stop so that the package does not slide on
the belt.
Chapter 14 Solutions
ENGR.MECH.: DYNAMICS-EBOOK>I<
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from t...
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Triangle Pattern Write a program that displays the following pattern on the screen:
Starting Out with C++ from Control Structures to Objects (9th Edition)
If P = 15 kN, determine the average shear stress in the pins at A, B, and C. All pins are in double shear, and ...
Mechanics of Materials (10th Edition)
For the circuit shown, find (a) the voltage υ, (b) the power delivered to the circuit by the current source, an...
Electric Circuits. (11th Edition)
Open the Chap3\ Error2\ Error2 project from the student sample programs folder. The application has an error. F...
Starting Out With Visual Basic (8th Edition)
Write a program that determines the change to be dispensed from a vending machine. An item in the machine can c...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The coefficient of static friction between the 200-kg crate and the flat bed of the truck is 0.3. Determine the shortest time for the truck to reach a speed of 60 km/h, starting from rest with constant acceleration, so that the crate does not slip.arrow_forwardThe coefficient of static friction between the 184-kg crate and the flat bed of the truck is μk = 0.37. Determine the shortest time for the truck to reach a speed of 74 km/h, starting from rest with constant acceleration, so that the crate does not slip. Answer is minutes.arrow_forwardThe force F, acting in a constant direction on the 24-kg block, has a magnitude which varies with the position s of the block. When s = 0 the block is moving to the right at v = 6 m/s. The coefficient of kinetic friction between the block and surface is μk = 0.3. Determine how far the block must slide before its velocity becomes 15 m/s. No hand written solution and no imagearrow_forward
- The constant 8-N force is pulling the 2-kg crate across the horizontal surface. If the coefficient of kinetic friction between the crate and the surfce is 0.3, determine the time required to increase the speed v of the crate from 3 m/s to 12 m/s. 8 N 30° 2 kg He =0.3arrow_forwardA 100kg crate is originally at rest and is subjected to two forces. Determine the distance(m) it slides to reach a speed of 18. The coefficient of kinetic friction between the crate and the surface is uk=0.3. 1000 N 800 N 3 30°arrow_forwardThe crate, which has a mass of 190 kg, is subjected to the action of the two forces.(Figure 1) If it is originally at rest, determine the distance it slides in order to attain a speed of 7 m/s. The coefficient of kinetic friction between the crate and the surface is μk = 0.2.Express your answer to three significant figures and include the appropriate units.arrow_forward
- At the instant when a force of F = (8t2) Ib is applied on the 10 Ib block, the block was moving at 4 ft/s. Assuming the coefficient of friction between the block and the surface is Hk = 0.2, determine the velocity of the block when it moves s = 30 ft. v = 4 ft/s F = (8f) lbarrow_forwardThe crate, which has a mass of 180 kg If it is originally at rest, determine the distance it slides in order to attain a speed of 9 m/s. The coefficient of kinetic friction between the crate and the surface is μk = 0.2. Please answer using 3 sig figs.arrow_forwardIf the 40kg box is moving with 1 m/s^2 acceleration to the right, determine the magnitude of normal force acting on the box, if F is 174 N. The coefficient of kinetic friction between the box and the ground is 0.3.arrow_forward
- The motor is towing the crate that has a mass of me = 1000 kg, and rests on the flat surface. It delivers an increasing horizontal pulling force of T= 500 Newton, where t is in second, to its cable at A, after 5 which the force is kept constant at 5000 N. The coefficients of static friction and kinetic friction are us =0.3 and uk =0.2, respectively, between the crate and the surface. Determine the velocity (m/s) of the crate when t₂ = 5s.arrow_forwardQ20. The 74-kg man pushes on the 134-kg crate with a horizontal force F. If the coefficient of kinetic friction between the crate and the surface is k = 0.12, and the coefficient of static friction between the man's shoes and the surface is με = 0.85, what is the greatest acceleration (in m/s²) the man can give the crate? Hint, this is when the man himself is on the verge of slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². Answer: ▬▬▬▬▬▬▬▬▬▬arrow_forwardThe 182-kg crate is subjected to the forces shown. If it is originally at rest, determine the distance it slides in order to attain a speed of v = 11 m/s. The coefficient of kinetic friction between the crate and the surface is u = 0.15. %3D 500 N 400 N 30 45 Answer: Checkarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY