ENGR.MECH.: DYNAMICS-EBOOK>I<
14th Edition
ISBN: 9781292088785
Author: HIBBELER
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 25P
The 5-lb cylinder is falling from A with a speed vA = 10 ft/s onto the platform. Determine the maximum displacement of the platform, caused by the collision. The spring has an unstretched length of 1.75 ft and is originally kept in compression by the 1-ft long cables attached to the platform. Neglect the mass of the platform and spring and any energy lost during the collision.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 5.27 kg collar B rests on the frictionless arm AA! The collar is held in place by the rope attached to drum D and rotates about O in a horizontal plane. The
linear velocity of the collar B is increasing according to v = 0.2 t2 where v is in m/s and tis in seconds. Find the tension in the rope and the force of the bar on
.the collar if 5 s,r= 0.558 m and 0 = 58°
A
A'
D
The spring of constant k = 120 N/m is unstretched when the slider of mass m = 1.6 kg passes position B. If the slider is released fre
rest in position A, determine its speed as it passes points B and C. What is the normal force exerted by the guide on the slider at
position C? Neglect friction between the mass and the circular guide, which lies in a vertical plane. The distance R = 0.95 m.
m
B
Answers
Vg =
m/s
Vc=
i
m/s
Nc=
The roller coaster car has a mass of 700 kg, including its passenger. If it starts from the top of the hill A with a
speed v A = 3 m/s, determine the minimum height h of the hill crest so that the car travels around the inside
loops without leaving the track. Neglect friction, the mass of the wheels, and the size of the car. What is the
normal reaction on the car when the car is at B
find the Max g-force on passenger, bank angle
the force required to slow down the motion and the time the force is applied must be determined to bring the
coaster to rest.
The maximum G-load experienced by a person should be no more than 5 g and fint the bank angle
B
h
15 m
Chapter 14 Solutions
ENGR.MECH.: DYNAMICS-EBOOK>I<
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 6-lb box slides on the surface for which u: = 0.3. The box has a velocity v = 15 ft /s when it is 2 ft from the plate. v = 15 ft /s 2 ft Part A If the box strikes the smooth plate, which has a weight of 23 lb and is held in position by an unstretched spring of stiffness k = 340 lb /ft, determine the maximum compression imparted to the spring. Take e = 0.8 between the box and the plate. Assume that the plate slides smoothly. Express your answer using three significant figures and include the appropriate units. ANSWER: x =arrow_forwardThe steel ingot has a mass of 1940 kg. It travels along the conveyor at a speed v= 0,2 m/s when it collides with the "nested" spring assembly. If the stiffness of the outer spring is Ka= 5 kN/m, determine the required stiffness Kb of the inner spring so that the motion of the ingot is stopped at the moment the front, C, of the ingot is 0.3 m from the wall. (Answer in kN/m) 0.5 m -0.45 m kB k Barrow_forwardThe roller coaster car has a mass of 700 kg, including its passenger. If it starts from the top of the hill A with a speed v A = 3 m/s, determine the minimum height h of the hill crest so that the car travels around the inside loops without leaving the track. Neglect friction, the mass of the wheels, and the size of the car. What is the normal reaction on the car when the car is at Bfind the Max g-force on passenger, bank anglethe force required to slow down the motion and the time the force is applied must be determined to bring the coaster to rest.The maximum G-load experienced by a person should be no more than 5 g and fint the bank anglearrow_forward
- The car has a mass m0 and is used to tow the smooth chain having a total length l and a mass per unit of length m. If the chain is originally piled up, determine the tractive force F that must be supplied by the rear wheels ofthe car, necessary to maintain a constant speed v while the chain is being drawn out.arrow_forwardThe roller coaster car has a mass of 700 kg, including its passenger. If it starts from the top of the hill A with a speed v A = 3 m/s, determine the minimum height h of the hill crest so that the car travels around the inside loops without leaving the track. Neglect friction, the mass of the wheels, and the size of the car. What is the normal reaction on the car when the car is at B1. find the Max g-force on passenger, bank angle2. the force required to slow down the motion and the time the force is applied must be determined to bring the coaster to rest.3. The maximum G-load experienced by a person should be no more than 5 garrow_forwardThe steel ingot has a mass of 1800 kg. It travels along the conveyor at a speed v=0.5m/s when it collides with the "nested" spring assembly. If the stiffness of the outer spring is kA=5kN/m, determine the required stiffness kB of the inner spring so that the motion of the ingot is stopped at the moment the front, C, of the ingot is 0.3 m from the wall.arrow_forward
- 400 mm The spring attached to the mass of m = 0. 5 kg sliding collar has a stiffness of k = 0.21 kN/m and a free length of 150 mm. If the speed of the collar in position A is 4 m/s to the right, determine the total energy and the speed of the collar in position B, Neglecet 100 mm friction. 200arrow_forwardThe 5-lb collar slides on the smooth rod, so that when it is at 4 it has a speed of 10 ft/s. If the spring to which it is attached has an unstretched length of 3 ft. and a stiffness of k = 10 lb/ft, determine the normal force on the collar and the acceleration of the collar at this instant. Solution: 2 ft 10 ft/sarrow_forwardh 2. The roller coaster car has a mass of 700 kg, including its passenger. If it is released from rest at the top of the hill A, determine the minimum height h of the hill crest so that the car travels around both inside the loops without leaving the track. Neglect friction, the mass of the wheels, and the size of the car. Take pB = 7.5 m and pC=5 m. 15 m B 10 m Carrow_forward
- The 12-lb box slides on the surface for which pux=0.3. The box has a velocity u = 15 ft/ s when it is 2 ft from the plate. (Figure 1) If the box strikes the smooth plate, which has a weight of 25 lb and is held in position by an unstretched spring of stiffness & = 360 lb / ft, determine the maximum compression imparted to the spring. Take e = 0.8 between the box and the plate. Assume that the plate slides smoothly. Express your answer using three significant figures and include the appropriate units. x=? v = 15 ft /s k 2 ftarrow_forward0.5 m 0.45 m kg kA C 1A The ingot has a mass of 1,800 kg. It travels along the conveyor at a speed of v = 0.5 m/s when it collides with the spring assembly. If the stiffness of the outer spring is KA = 5,000 N/m, determine the required stiffness Kg of the inner spring so that the motion of the ingot is stopped at the moment the front, C, of the ingot is 0.3 meters from the wall. Friction does not apply. B.arrow_forwardThe block has a mass of 40 kg and rests on the surface of the cart having a mass of 78 kg If the spring which is attached to the cart and not the block is compressed 0.2 m and the system is released from rest, determine the speed of the block with respect to the cart after the spring becomes undeformed. Neglect the mass of the wheels and the spring in the calculation. Also neglect friction. Take k = 310 N/marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License