Chemistry: Structure and Properties (2nd Edition)
2nd Edition
ISBN: 9780134293936
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 98E
The evaporation of a 120-nm film of n-pentane from a single crystal of aluminum oxide is zero order with a rate constant of
a. If the initial surface coverage is
b. What fraction of the film is left after 10 s? Assume the same initial coverage as in part a.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry: Structure and Properties (2nd Edition)
Ch. 14 - Explain why lizards become sluggish in cold...Ch. 14 - Why are reaction rates important (both practically...Ch. 14 - Using the idea that reactions occur as a result of...Ch. 14 - Using the idea that reactions occur as a result of...Ch. 14 - What units are typically used to express the rate...Ch. 14 - Why is the reaction rate for reactants defined as...Ch. 14 - Explain the difference between the average rate of...Ch. 14 - Consider a simple reaction in which a reactant A...Ch. 14 - How is the order of a reaction generally...Ch. 14 - For a reaction with multiple reactants, how is the...
Ch. 14 - Explain the difference between the rate law for a...Ch. 14 - Write integrated rate laws for zero-order,...Ch. 14 - What does the term half-life mean? Write the...Ch. 14 - How do reaction rates typically depend on...Ch. 14 - Prob. 15ECh. 14 - What is an Arrhenius plot? Explain the...Ch. 14 - Explain the meaning of the orientation factor in...Ch. 14 - Explain the difference between a normal chemical...Ch. 14 - In a reaction mechanism, what is an elementary...Ch. 14 - What are the two requirements for a proposed...Ch. 14 - What is an intermediate within a reaction...Ch. 14 - What is a catalyst? How does a catalyst increase...Ch. 14 - Explain the difference between homogeneous...Ch. 14 - What are the four basic steps involved in...Ch. 14 - What are enzymes? What is the active site of an...Ch. 14 - What is the general two-step mechanism by which...Ch. 14 - Consider the reaction. 2HBr(g)H2(g)+Br2(g) Express...Ch. 14 - Consider the reaction 2N2O(g)2N2(g)+O2(g) Express...Ch. 14 - For the reaction 2A(g)+B(g)3C(g) determine the...Ch. 14 - For the reaction A(g)+12B(g)2C(g) determine the...Ch. 14 - Consider the reaction. Cl2(g)+3F2(g)2ClF3(g)...Ch. 14 - Consider the reaction. 8H2S(g)+4O2(g)8H2O(g)+S8(g)...Ch. 14 - Consider the reaction: C4H8(g)2C2H4(g) The...Ch. 14 - Consider the reaction: NO2(g)NO(g)+12O2(g) The...Ch. 14 - Consider the reaction. H2(g)+Br2(g)2HBr(g) The...Ch. 14 - Consider the reaction. 2H2O2(aq)2H2O(l)+O2(g) The...Ch. 14 - This graph shows a plot of the rate of a reaction...Ch. 14 - This graph shows a plot of the rate of a reaction...Ch. 14 - What are the units of k for each type of reaction?...Ch. 14 - This reaction is first order in N2O5:...Ch. 14 - A reaction in which A, B, and C react to form...Ch. 14 - A reaction in which A, B, and C react to form...Ch. 14 - Consider the tabulated data showing initial rate...Ch. 14 - Consider the tabulated data showing initial rate...Ch. 14 - The tabulated data were collected for this...Ch. 14 - The tabulated data were collected for this...Ch. 14 - Indicate the order of reaction consistent with...Ch. 14 - Indicate the order of reaction consistent with...Ch. 14 - The tabulated data show the concentration of AB...Ch. 14 - The tabulated data show the concentration of N2O5...Ch. 14 - The tabulated data show the concentration of...Ch. 14 - Prob. 52ECh. 14 - This reaction was monitored as a function of time:...Ch. 14 - This reaction was monitored as a function of time:...Ch. 14 - Prob. 55ECh. 14 - Prob. 56ECh. 14 - Prob. 57ECh. 14 - Prob. 58ECh. 14 - The diagram shows the energy of a reaction as the...Ch. 14 - Prob. 60ECh. 14 - Prob. 61ECh. 14 - Prob. 62ECh. 14 - Prob. 63ECh. 14 - The rate constant (k) for a reaction is measured...Ch. 14 - The tabulated data shown here were collected for...Ch. 14 - Prob. 66ECh. 14 - The tabulated data were collected for the...Ch. 14 - Prob. 68ECh. 14 - A reaction has a rate constant of 0.0117/s at...Ch. 14 - A reaction has a rate constant of 0.000122/s at...Ch. 14 - Prob. 71ECh. 14 - Prob. 72ECh. 14 - Prob. 73ECh. 14 - Prob. 74ECh. 14 - Prob. 75ECh. 14 - Prob. 76ECh. 14 - Consider this three-step mechanism for a...Ch. 14 - Prob. 78ECh. 14 - Prob. 79ECh. 14 - Prob. 80ECh. 14 - Suppose that a catalyst lowers the activation...Ch. 14 - The activation barrier for the hydrolysis of...Ch. 14 - The tabulated data were collected for this...Ch. 14 - Prob. 84ECh. 14 - Consider the reaction: A+B+CD The rate law for...Ch. 14 - Consider the reaction: 2O3(g)3O2(g) The rate law...Ch. 14 - At 700 K acetaldehyde decomposes in the gas phase...Ch. 14 - Prob. 88ECh. 14 - Dinitrogen pentoxide decomposes in the gas phase...Ch. 14 - Cyclopropane (C3H6) reacts to form propene (C3H6)...Ch. 14 - Iodine atoms combine to form I2 in liquid hexane...Ch. 14 - Prob. 92ECh. 14 - The reaction AB(aq)A(g)+B(g) is second order in AB...Ch. 14 - The reaction 2H2O2(aq)2H2O(l)+O2(g) is first order...Ch. 14 - Consider this energy diagram: a. How many...Ch. 14 - Consider the reaction in which HCI adds across the...Ch. 14 - The desorption of a single molecular layer of...Ch. 14 - The evaporation of a 120-nm film of n-pentane from...Ch. 14 - Prob. 99ECh. 14 - Prob. 100ECh. 14 - Prob. 101ECh. 14 - Consider the two reactions: O+N2NO+NEa= 315 kJ/mol...Ch. 14 - Anthropologists can estimate the age of a bone or...Ch. 14 - Prob. 104ECh. 14 - Consider the gas-phase reaction: H2(g)+I2(g)2HI(g)...Ch. 14 - Consider the reaction:...Ch. 14 - Prob. 107ECh. 14 - Prob. 108ECh. 14 - A certain substance X decomposes. Fifty percent of...Ch. 14 - Prob. 110ECh. 14 - Prob. 111ECh. 14 - Prob. 112ECh. 14 - Prob. 113ECh. 14 - Prob. 114ECh. 14 - Prob. 115ECh. 14 - Prob. 116ECh. 14 - Phosgene (Cl2CO), a poison gas used in World War...Ch. 14 - The rate of decomposition of N2O3(g) to NO2(g) and...Ch. 14 - At 473 K, for the elementary reaction...Ch. 14 - Prob. 120ECh. 14 - Prob. 121ECh. 14 - A particular reaction, Aproducts has a rate that...Ch. 14 - Prob. 123ECh. 14 - A certain compound, A, reacts to form products...Ch. 14 - Methane (CH4) is a greenhouse gas emitted by...Ch. 14 - This graph shows the concentration of the reactant...Ch. 14 - Prob. 2SAQCh. 14 - Prob. 3SAQCh. 14 - Prob. 4SAQCh. 14 - Prob. 5SAQCh. 14 - Prob. 6SAQCh. 14 - Prob. 7SAQCh. 14 - Prob. 8SAQCh. 14 - The rate constant of a reaction is measured at...Ch. 14 - Prob. 10SAQCh. 14 - The mechanism shown here is proposed for the...Ch. 14 - Prob. 12SAQCh. 14 - These images represent the first-order reaction AB...Ch. 14 - Prob. 14SAQCh. 14 - Prob. 15SAQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For the past 10 years, the unsaturated hydrocarbon 1, 3-butadiene (CH2 = CH - CH = CH2) has ranked 38th among the top 50 industrial Chemicals. It is used primarily for the manufacture of synthetic rubber. An isomer exists also as cyclobutene: The isomerization of cyclobutene to butadiene is first-order and the rate constant has been measured as 2.0104s1 at 150 C in a 0.53-L ?ask. Determine the partial pressure of cyclobutene and its concentration after 30.0 minutes if an isomerization reaction is carried out at 150 C with an initial pressure of 55 torr.arrow_forwardThe decomposition of N2O5 in CCl4 is a first-order reaction. If 2.56 mg of N2O5 is present initially and 2.50 mg is present after 4.26 minutes at 55 C, what is the value of the rate constant, k?arrow_forwardThe reaction NO(g) + 1/2 Cl2(g) NOCl(g) is first-order in [Cl2] and second-order with respect to [NO]. Under a given set of conditions, the initial rate of this reaction is 620 106 mol/L s. What is the rate of this reaction if the concentration of NO is doubled and the concentration of Cl2 is reduced to half the original value? (a) 6.20 106 mol/L s (b) 124 105 mol/L s (c) 2.48 105 mol/L s (d) 4.96 105 mol/L sarrow_forward
- The decomposition of SO2Cl2 is a first-order reaction: SO2Cl2(g) SO2(g) + Cl2(g) The rate constant for the reaction is 2.8 103 min1 at 600 K. If the initial concentration of SO2Cl2 is 1.24 103 mol/L, how long will it take for the concentration to drop to 0.31 103 mol/L?arrow_forwardThe decomposition of gaseous dimethyl ether at ordinary pressures is first-order. Its half-life is 25.0 minutes at 500 C: CH3OCH3(g) CH4(g) + CO(g) + H2(g) (a) Starting with 8.00 g of dimethyl ether, what mass remains (in grams) after 125 minutes and after 145 minutes? (b) Calculate the time in minutes required to decrease 7.60 ng (nanograms) to 2.25 ng. (c) What fraction of the original dimethyl ether remains after 150 minutes?arrow_forwardThe thermal decomposition of diacetylene, C4H2, was studied at 950 C. Use the following data (K. C. Hou and H. B. Palmer, Journal of Physical Chemistry. Vol. 60, p. 858, 1965) to determine the order of the reaction.arrow_forward
- The rate constant for the decomposition of acetaldehyde, CH3CHO, t0 methane, CH4, and carbon monoxide, CO, in the gas phase is 1.1102 L/mol/s at 703 K and 4.95 L/moI/s at 865 K. Determine the activation energy for this decomposition.arrow_forwardHydrogen peroxide, H2O2(aq), decomposes to H2O() and O2(g) in a reaction that is first-order in H2O2 and has a rate constant k = 1.06 103 min1 at a given temperature. (a) How long will it take for 15% of a sample of H2O2 to decompose? (b) How long will it take for 85% of the sample to decompose?arrow_forwardGaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forward
- Many biochemical reactions are catalyzed by acids. A typical mechanism consistent with the experimental results (in which HA is the acid and X is the reactant) is Step 1: Step 2: Step 3: Derive the rate law from this mechanism. Determine the order of reaction with respect to HA. Determine how doubling the concentration of HA would affect the rate of the reaction.arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY