Chemistry: Structure and Properties (2nd Edition)
2nd Edition
ISBN: 9780134293936
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 113E
Interpretation Introduction
To determine: The reaction order for the given reaction under certain conditions.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 14 Solutions
Chemistry: Structure and Properties (2nd Edition)
Ch. 14 - Explain why lizards become sluggish in cold...Ch. 14 - Why are reaction rates important (both practically...Ch. 14 - Using the idea that reactions occur as a result of...Ch. 14 - Using the idea that reactions occur as a result of...Ch. 14 - What units are typically used to express the rate...Ch. 14 - Why is the reaction rate for reactants defined as...Ch. 14 - Explain the difference between the average rate of...Ch. 14 - Consider a simple reaction in which a reactant A...Ch. 14 - How is the order of a reaction generally...Ch. 14 - For a reaction with multiple reactants, how is the...
Ch. 14 - Explain the difference between the rate law for a...Ch. 14 - Write integrated rate laws for zero-order,...Ch. 14 - What does the term half-life mean? Write the...Ch. 14 - How do reaction rates typically depend on...Ch. 14 - Prob. 15ECh. 14 - What is an Arrhenius plot? Explain the...Ch. 14 - Explain the meaning of the orientation factor in...Ch. 14 - Explain the difference between a normal chemical...Ch. 14 - In a reaction mechanism, what is an elementary...Ch. 14 - What are the two requirements for a proposed...Ch. 14 - What is an intermediate within a reaction...Ch. 14 - What is a catalyst? How does a catalyst increase...Ch. 14 - Explain the difference between homogeneous...Ch. 14 - What are the four basic steps involved in...Ch. 14 - What are enzymes? What is the active site of an...Ch. 14 - What is the general two-step mechanism by which...Ch. 14 - Consider the reaction. 2HBr(g)H2(g)+Br2(g) Express...Ch. 14 - Consider the reaction 2N2O(g)2N2(g)+O2(g) Express...Ch. 14 - For the reaction 2A(g)+B(g)3C(g) determine the...Ch. 14 - For the reaction A(g)+12B(g)2C(g) determine the...Ch. 14 - Consider the reaction. Cl2(g)+3F2(g)2ClF3(g)...Ch. 14 - Consider the reaction. 8H2S(g)+4O2(g)8H2O(g)+S8(g)...Ch. 14 - Consider the reaction: C4H8(g)2C2H4(g) The...Ch. 14 - Consider the reaction: NO2(g)NO(g)+12O2(g) The...Ch. 14 - Consider the reaction. H2(g)+Br2(g)2HBr(g) The...Ch. 14 - Consider the reaction. 2H2O2(aq)2H2O(l)+O2(g) The...Ch. 14 - This graph shows a plot of the rate of a reaction...Ch. 14 - This graph shows a plot of the rate of a reaction...Ch. 14 - What are the units of k for each type of reaction?...Ch. 14 - This reaction is first order in N2O5:...Ch. 14 - A reaction in which A, B, and C react to form...Ch. 14 - A reaction in which A, B, and C react to form...Ch. 14 - Consider the tabulated data showing initial rate...Ch. 14 - Consider the tabulated data showing initial rate...Ch. 14 - The tabulated data were collected for this...Ch. 14 - The tabulated data were collected for this...Ch. 14 - Indicate the order of reaction consistent with...Ch. 14 - Indicate the order of reaction consistent with...Ch. 14 - The tabulated data show the concentration of AB...Ch. 14 - The tabulated data show the concentration of N2O5...Ch. 14 - The tabulated data show the concentration of...Ch. 14 - Prob. 52ECh. 14 - This reaction was monitored as a function of time:...Ch. 14 - This reaction was monitored as a function of time:...Ch. 14 - Prob. 55ECh. 14 - Prob. 56ECh. 14 - Prob. 57ECh. 14 - Prob. 58ECh. 14 - The diagram shows the energy of a reaction as the...Ch. 14 - Prob. 60ECh. 14 - Prob. 61ECh. 14 - Prob. 62ECh. 14 - Prob. 63ECh. 14 - The rate constant (k) for a reaction is measured...Ch. 14 - The tabulated data shown here were collected for...Ch. 14 - Prob. 66ECh. 14 - The tabulated data were collected for the...Ch. 14 - Prob. 68ECh. 14 - A reaction has a rate constant of 0.0117/s at...Ch. 14 - A reaction has a rate constant of 0.000122/s at...Ch. 14 - Prob. 71ECh. 14 - Prob. 72ECh. 14 - Prob. 73ECh. 14 - Prob. 74ECh. 14 - Prob. 75ECh. 14 - Prob. 76ECh. 14 - Consider this three-step mechanism for a...Ch. 14 - Prob. 78ECh. 14 - Prob. 79ECh. 14 - Prob. 80ECh. 14 - Suppose that a catalyst lowers the activation...Ch. 14 - The activation barrier for the hydrolysis of...Ch. 14 - The tabulated data were collected for this...Ch. 14 - Prob. 84ECh. 14 - Consider the reaction: A+B+CD The rate law for...Ch. 14 - Consider the reaction: 2O3(g)3O2(g) The rate law...Ch. 14 - At 700 K acetaldehyde decomposes in the gas phase...Ch. 14 - Prob. 88ECh. 14 - Dinitrogen pentoxide decomposes in the gas phase...Ch. 14 - Cyclopropane (C3H6) reacts to form propene (C3H6)...Ch. 14 - Iodine atoms combine to form I2 in liquid hexane...Ch. 14 - Prob. 92ECh. 14 - The reaction AB(aq)A(g)+B(g) is second order in AB...Ch. 14 - The reaction 2H2O2(aq)2H2O(l)+O2(g) is first order...Ch. 14 - Consider this energy diagram: a. How many...Ch. 14 - Consider the reaction in which HCI adds across the...Ch. 14 - The desorption of a single molecular layer of...Ch. 14 - The evaporation of a 120-nm film of n-pentane from...Ch. 14 - Prob. 99ECh. 14 - Prob. 100ECh. 14 - Prob. 101ECh. 14 - Consider the two reactions: O+N2NO+NEa= 315 kJ/mol...Ch. 14 - Anthropologists can estimate the age of a bone or...Ch. 14 - Prob. 104ECh. 14 - Consider the gas-phase reaction: H2(g)+I2(g)2HI(g)...Ch. 14 - Consider the reaction:...Ch. 14 - Prob. 107ECh. 14 - Prob. 108ECh. 14 - A certain substance X decomposes. Fifty percent of...Ch. 14 - Prob. 110ECh. 14 - Prob. 111ECh. 14 - Prob. 112ECh. 14 - Prob. 113ECh. 14 - Prob. 114ECh. 14 - Prob. 115ECh. 14 - Prob. 116ECh. 14 - Phosgene (Cl2CO), a poison gas used in World War...Ch. 14 - The rate of decomposition of N2O3(g) to NO2(g) and...Ch. 14 - At 473 K, for the elementary reaction...Ch. 14 - Prob. 120ECh. 14 - Prob. 121ECh. 14 - A particular reaction, Aproducts has a rate that...Ch. 14 - Prob. 123ECh. 14 - A certain compound, A, reacts to form products...Ch. 14 - Methane (CH4) is a greenhouse gas emitted by...Ch. 14 - This graph shows the concentration of the reactant...Ch. 14 - Prob. 2SAQCh. 14 - Prob. 3SAQCh. 14 - Prob. 4SAQCh. 14 - Prob. 5SAQCh. 14 - Prob. 6SAQCh. 14 - Prob. 7SAQCh. 14 - Prob. 8SAQCh. 14 - The rate constant of a reaction is measured at...Ch. 14 - Prob. 10SAQCh. 14 - The mechanism shown here is proposed for the...Ch. 14 - Prob. 12SAQCh. 14 - These images represent the first-order reaction AB...Ch. 14 - Prob. 14SAQCh. 14 - Prob. 15SAQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A study of the rate of dimerization of C4H6 gave the data shown in the table: 2C4H6C8H12 (a) Determine the average rate of dimerization between 0 s and 1600 s, and between 1600 s and 3200 s. (b) Estimate the instantaneous rate of dimerization at 3200 s from a graph of time versus [C4H6]. What are the units of this rate? (c) Determine the average rate of formation of C8H12 at 1600 s and the instantaneous rate of formation at 3200 s from the rates found in parts (a) and (b).arrow_forwardThe decomposition of sulfuryl chlorideSO2Cl2fur dioxide and chlorine gases is a first-order reaction. It is found that at a certain temperature, it takes 1.43 hours to decompose 0.0714 M to 0.0681 M. (a) What is the rate constant for the decomposition? (b) What is the rate of decompostion [ SO2Cl2 ]=0.0462M? (c) How long will it take to decompose SO2Cl2 so that 45% remains?arrow_forwardIsomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forward
- Kinetics II You and a friend are working together in order to obtain as much kinetic information as possible about the reaction A(g)B(g)+C(g). One thing you know before performing the experiments is that the reaction is zero order, first order, or second order with respect to A. Your friend goes off, runs the experiment, and brings back the following graph. a After studying the curve of the graph, she declares that the reaction is second order, with a corresponding rate law of Rate = k[A]2. Judging solely on the basis of the information presented in this plot, is she correct in her statement that the reaction must be second order? Here are some data collected from her experiment: Time (s) [A] 0.0 1.0 1.0 0.14 3.0 2.5 103 5.0 4.5 105 7.0 8.3 107 b The half-life of the reaction is 0.35 s. Do these data support the reaction being second order, or is it something else? Try to reach a conclusive answer without graphing the data. c What is the rate constant for the reaction? d The mechanism for this reaction is found to be a two-step process, with intermediates X and Y. The first step of the reaction is the rate-determining step. Write a possible mechanism for the reaction. e You perform additional experiments and find that the rate constant doubles in value when you increase the temperature by 10oC. Your lab partner doesnt understand why the rate constant changes in this manner. What could you say to your partner to help her understand? Feel free to use figures and pictures as part of your explanation.arrow_forwardAt 620. K butadiene dimerizes at a moderate rate. The following data were obtained in an experiment involving this reaction: t(s) [C4H6] (mol/L) 0 0.01000 1000.. 0.00629 2000. 0.00459 3000. 0.00361 a. Determine the order of the reaction in butadiene. b. In how many seconds is the dimerization 1.0% complete? c. In how many seconds is the dimerization 10.0% complete? d. What is the half-life for the reaction if the initial concentration of butadiene is 0.0200 M? e. Use the results from this problem and Exercise 45 to calculate the activation energy for the dimerization of butadiene.arrow_forwardA reaction has two reactants Q and P. What is the order with respect to each reactant and the overall order of the reaction described by the following rate expressions? (a) rate=k1(b) rate=k2[ P ]2[ Q ] (c) rate=k3[ Q ]2 (d) rate=k4[ P ][ Q ]arrow_forward
- The decomposition of ozone is a second-order reaction with a rate constant of 30.6 atm1 s1 at 95 C. 2O3(g)3O2(g) If ozone is originally present at a partial pressure of 21 torr, calculate the length of time needed for the ozone pressure to decrease to 1.0 torr.arrow_forwardWhen heated, tetrafluoroethylene dimerizes to form octafluorocyclobutane. C2F4(g) C4F8(g) To determine the rate of this reaction at 488 K, the data in the table were collected. Analysis was done graphically, as shown below: (a) What is the rate law for this reaction? (b) What is the value of the rate constant? (c) What is the concentration of C2F4 after 600 s? (d) How long will it take until the reaction is 90% complete?arrow_forwardA reaction has two reactants X and Y. What is the order with respect to each reactant and the overall order of the reaction described by the following rate expressions? (a) rate=k1[ X ][ Y ]2 (b) rate=k2[ X ]2 (c) rate=k3[ X ][ Y ] (d) rate=k4arrow_forward
- You are studying the kinetics of the reaction H2(g) + F2(g) 2HF(g) and you wish to determine a mechanism for the reaction. You run the reaction twice by keeping one reactant at a much higher pressure than the other reactant (this lower-pressure reactant begins at 1.000 atm). Unfortunately, you neglect to record which reactant was at the higher pressure, and you forget which it was later. Your data for the first experiment are: Pressure of HF (atm) Time(min) 0 0 0.300 30.0 0.600 65.8 0.900 110.4 1.200 169.1 1.500 255.9 When you ran the second experiment (in which the higher pressure reactant was run at a much higher pressure), you determine the values of the apparent rate constants to be the same. It also turns out that you find data taken from another person in the lab. This individual found that the reaction proceeds 40.0 times faster at 55C than at 35C. You also know, from the energy-level diagram, that there are three steps to the mechanism, and the first step has the highest activation energy. You look up the bond energies of the species involved and they are (in kJ/mol): H8H (432), F8F (154), and H8F (565). a. Sketch an energy-level diagram (qualitative) that is consistent with the one described previously. Hint: See Exercise 106. b. Develop a reasonable mechanism for the reaction. c. Which reactant was limiting in the experiments?arrow_forwardConsider a hypothetical reaction between A and B: A + B products Use the following initial rate data to calculate the rate constant for this reaction. [A] (mol/L) [B] (mol/L) Initial Rate (mol/L s) 0.20 1.0 3.0 0.50 1.0 11.8 2.0 2.0 189.5arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY