Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 36E
A string is clamped at both ends and tensioned until its fundamental frequency is 85 Hz. If the string is then held rigidly at its midpoint, what’s the lowest frequency at which it will vibrate?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A string of length L = 1.20 m is fixed at both ends and is stretched with a tension
provided by a weight of 1.763 kg. If the mass per unit length of the string is 0.0012 kg/m,
what will be the fundamental frequency of the vibration of the string?
The above string is now made to vibrate at the same frequency by adjusting its tension,
but in its third harmonic. What is the new tension on the string?
A violin string has a fundamental frequency of 450 Hz. Which of the following frequencies can set the string into a resonant
vibration (standing wave pattern)?
O 1350 Hz
0 45 Hz
O 1000 Hz
O 250 Hz
A guitar player tunes the fundamental frequency of a guitar string to 450 Hz. (a) What will be the fundamental frequency if she then
increases the tension in the string by 29%? (b) What will it be if, instead, she decreases the length along which the string oscillates by
sliding her finger from the tuning key one-third of the way down the string toward the bridge at the lower end?
(a) Number i 80
(b) Number
i 77
Units
Units
Hz
Hz
Chapter 14 Solutions
Essential University Physics
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.4 - Two identical stars are different distances from...Ch. 14.5 - Your band needs a new guitar amplifier, and the...Ch. 14.6 - Light shines through two small holes into a dark...Ch. 14.7 - Youre holding one end of a taut rope, and you cant...Ch. 14.8 - A string 1 m long is clamped tightly at one end...Ch. 14.9 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 6FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Prob. 9FTDCh. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 12ECh. 14 - Prob. 13ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 19ECh. 14 - Prob. 20ECh. 14 - Prob. 21ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - Transverve waves propagate at 18 m/s on a string...Ch. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - Prob. 26ECh. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 31ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 33ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Prob. 42ECh. 14 - Example 14.l: A surfer just misses caching a big...Ch. 14 - Example 14.1: A Mars rover includes an experiment...Ch. 14 - Example 14.1: The speed of sound n water is 1480...Ch. 14 - Prob. 46ECh. 14 - Example 14.7: The speed limit on a highway is 95.0...Ch. 14 - Prob. 49ECh. 14 - Prob. 50PCh. 14 - Prob. 51PCh. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 62PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 69PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 72PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 77PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Two loudspeakers are mounted 2.85 m apart,...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. You have a collection of six 1.0 k? resistors. What is the smallest resistance you can make by combining th...
College Physics: A Strategic Approach (3rd Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
30. Drosophila has a diploid chromosome number of 2n = 8, which includes one pair of sex chromosomes (XX in fem...
Genetic Analysis: An Integrated Approach (3rd Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends. (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent anti-nodes for this mode of vibration.arrow_forwardA cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forwardA taut rope has a mass of 0.180 kg and a length of 3.60 m. What power must be supplied to the rope so as to generate sinusoidal waves having an amplitude of 0.100 m and a wavelength of 0.500 m and traveling with a speed of 30.0 m/s?arrow_forward
- A string has a mass of 150 g and a length of 3.4 m. One end of the string is fixed to a lab stand and the other is attached to a spring with a spring constant of ks=100 N/m. The free end of the spring is attached to another lab pole. The tension in the string is maintained by the spring. The lab poles are separated by a distance that stretches the spring 2.00 cm. The string is plucked and a pulse travels along the string. What is the propagation speed of the pulse?arrow_forwardTwo identical piano wires have a fundamental frequency of 600 Hz when kept under the same tension.What fractional increase in the tension of one wire will lead to the occurrence of 6.0 beats/s when both wires oscillate simultaneously?arrow_forwardThe A string on a violin has a fundamental frequency of 440 Hz . The length of the vibrating portion is 28 cm , and it has a mass of 0.37 g . Under what tension must the string be placed?Express your answer using two significant figures.arrow_forward
- The D-string on a properly tuned guitar produces a tone with a fundamental frequency of 146.8Hz. The length of the oscillating portion of a D-string on a certain guitar is 0.616m. This same length of string is weighed and found have a mass of 1.72×10−3kg. Part (a) At what tension, in newtons, is the D-string properly tuned? Part (b) What is the wavelength, in meters, of the standing wave in the D-string when it is oscillating at its third harmonic, which is also called its second overtone? Part (c) Determine the frequency, in hertz, of the third harmonic of the tone produced by the properly tuned D-string. Part (d) The guitarist shortens the oscillating length of the properly tuned D-string by 0.138m by pressing on the string with a finger. What is the new fundamental frequency, in hertz, of the shortened string?arrow_forwardA string with a mass ? = 8.00? and a length ? = 5.00 ? has one end attached to a wall; the other end is draped over a small, fixed pulley a distance ? = 4.00? from the wall and attached to a hanging object with a mass ? = 4.00?? as shown in the figure. If the horizontal part of the string is plucked, what is the fundamental frequency of its vibration?arrow_forwardThe D-string on a properly tuned guitar produces a tone with a fundamental frequency of 146.8 Hz. The oscillating length of a D-string on a certain guitar is 0.64 m. This same length of string is weighed and found have a mass of 1.5×10-3 kg. Part (a) At what tension, in newtons, must the D-string must be stretched in order for it to be properly tuned? Part (b) What is the wavelength, in meters, of the standing wave in the D-string when it is oscillating at its third harmonic (also called its second overtone)? Part (c) Determine the frequency, in hertz, of the third harmonic of the tone produced by the properly tuned D-string. Part (d) The guitarist shortens the oscillating length of the properly tuned D-string by 0.15 m by pressing on the string with a finger. What is the fundamental frequency, in hertz, of the new tone that is produced when the string is plucked?arrow_forward
- A violin string vibrates at 293 {\rm Hz} when unfingered. At what frequency will it vibrate if it is fingered one-third of the way down from the end? (That is, only two-thirds of the string vibrates as a standing wave.)arrow_forwardWhen played in a certain manner, the lowest resonant frequency of a certain violin string is concert A (440 Hz).What is the frequency of the (a) second and (b) third harmonic of the string?arrow_forwardThe A string on a violin has a fundamental frequency of 440 Hz . The length of the vibrating portion is 29 cm , and it has a mass of 0.31 g Under what tension must the string be placed? Express your answer using two significant figures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY