Concept explainers
A sodium hydrogen carbonate-sodium carbonate buffer is to be prepared with a pH of 9.40.
(a) What must the
(b) How many moles of sodium hydrogen carbonate must be added to a liter of 0.225 M Na2CO3 to give this pH?
(c) How many grams of sodium carbonate must be added to 475 mL of 0.336 M NaHCO3 to give this pH? (Assume no volume change.)
(d) What volume of 0.200 M NaHCO3 must be added to 735 mL of a 0.139 M solution of Na2CO3 to give this pH? (Assume that volumes are additive.)
Trending nowThis is a popular solution!
Chapter 14 Solutions
Student Solutions Manual For Masterton/hurley's Chemistry: Principles And Reactions, 8th
- Calculate the mass of sodium acetate, NaCH3COO, you should add to 500. mL of a 0.150-M solution of acetic acid, CH3COOH, to buffer a solution at a pH of 4.57.arrow_forwardSodium benzoate, NaC7H5O2, is used as a preservative in foods. Consider a 50.0-mL sample of 0.250 M NaC7H5O2 being titrated by 0.200 M HBr. Calculate the pH of the solution: a when no HBr has been added; b after the addition of 50.0 mL of the HBr solution; c at the equivalence point; d after the addition of 75.00 mL of the HBr solution. The Kb value for the benzoate ion is 1.6 1010.arrow_forwardWhat is the pH of the solution obtained by titrating 1.30 g of sodium hydrogen sulfate, NaHSO4, dissolved in 50.0 mL of water with 0.175 M sodium hydroxide until the equivalence point is reached? Assume that any volume change due to adding the sodium hydrogen sulfate or to mixing the solutions is negligible.arrow_forward
- Identify the buffer system(s)the conjugate acidbase pair(s)present in a solution that contains equal molar amounts of the following: a. HF, KC2H3O2, NaC2H3O2, and NaF b. HNO3, NaOH, H3PO4, and NaH2PO4arrow_forwardKa for formic acid is 1.7 104 at 25C. A buffer is made by mixing 529 mL of 0.465 M formic acid, HCHO2, and 494 mL of 0.524 M sodium formate, NaCHO2. Calculate the pH of this solution at 25C after 110 mL of 0.152 M HCl has been added to this buffer.arrow_forwardA solution made up of 1.0 M NH3 and 0.50 M (NH4)2SO4 has a pH of 9.26. a Write the net ionic equation that represents the reaction of this solution with a strong acid. b Write the net ionic equation that represents the reaction of this solution with a strong base. c To 100. mL of this solution, 10.0 mL of 1.00 M HCl is added. How many moles of NH3 and NH4+ are present in the reaction system before and after the addition of the HCl? What is the pH of the resulting solution? d Why did the pH change only slightly upon the addition of HCl?arrow_forward
- A buffer is prepared by dissolving 0.0250 mol of sodium nitrite, NaNO2, in 250.0 mL of 0.0410 M nitrous acid, HNO2. Assume no volume change after HNO2 is dissolved. Calculate the pH of this buffer.arrow_forwardWhat is the pH of a solution that consists of 0.20 M ammonia, NH3, and 0.20 M ammonium chloride, NH4Cl?arrow_forwardA 25.0-mL sample of hydroxylamine is titrated to the equivalence point with 35.8 mL of 0.150 M HCl. a What was the concentration of the original hydroxylamine solution? b What is the pH at the equivalence point? c Which indicators, bromphenol blue, methyl red, or phenolphthalein, should be used to detect the end point of the titration? Why?arrow_forward
- Which of these combinations is the best to buffer the pH at approximately 9? Explain your choice. CH3COOH/NaCH3COO HCl/NaCl NH3/NH4Clarrow_forward8-71 Explain why you do not need to know the chemical formula of a buffer compound to use it.arrow_forwardIdentify each pair that could form a buffer. (a) HCl and CH3COOH (b) NaH2PO4 and Na2HPO4 (c) H2CO3 and NaHCO3arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning