![Physics: Principles with Applications](https://www.bartleby.com/isbn_cover_images/9780130606204/9780130606204_largeCoverImage.gif)
Concept explainers
The specific heat of glycerine.
![Check Mark](/static/check-mark.png)
Answer to Problem 16P
Solution:
The specific heat of glycerineis2356 J/kgK.
Explanation of Solution
Given:
is the specific heat of iron which is 460 J/kgk
is the specific heat of aluminium which is 921 J/kgk
is the specific heat of glycerine
is the mass of iron which is 290 g or 0.290 kg
is the mass of aluminium which is 95 g or 0.095 kg
is the mass of glycerine which is 250 g or 0.250 kg
is the temperature of copper which is 180 C
is the temperature of aluminium which is 10 C
is the temperature of glycerine which is 10 C
is equilibrium temperature which is 38 C
Formula Used:
The formula used is the relation between temperature and specific heat from thermodynamics
Where,
is the heat transferred
is the specific heat
is the mass
is the final temperature
is the initial temperature
From the formula above, the equilibrium temperature formula for calorimetry can be derived.
If two materials , and calorimeter with temperatures , and are in contact, then they will reach an equilibrium temperature .
This equilibrium temperature is given by equating the heat transferred by the three materials.
Equating the heat transferred is
This becomes
Where,
is the specific heat of material
is the specific heat of material
is the specific heat of material
is the mass of material
is the mass of material
is the mass of material
is the temperature of material
is the temperature of material
is the temperature of material
is equilibrium temperature
Calculation:
Inserting the given values in the equilibrium temperature formula for calorimetry:
J/kgK
Chapter 14 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Chemistry: The Central Science (14th Edition)
Campbell Biology (11th Edition)
Anatomy & Physiology (6th Edition)
Microbiology with Diseases by Body System (5th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Cosmic Perspective Fundamentals
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- An electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c) and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas. Momentum (MeV/c) relativistic classical electron proton Kinetic Energy (MeV)arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 20.0 µF.) (a) Find the equivalent capacitance between points a and b. µF (b) Calculate the charge on each capacitor, taking ΔVab = 14.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forward11. At what point in SHM is the velocity maximum? Displacement maximum?arrow_forward
- 6. Is the true pendulum an example of SHM? Explain.arrow_forwardIn the circuit shown below & = 66.0 V, R5 = 4.00, R3 = 2.00, R₂ = 2.20 ₪, I5 = 11.41 A, I₁ = 10.17 A, and i̟ = 6.88 A. Find the current through R2 and R3, and the values of the resistors R₁ and R. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) 12 = 8.12 8.12 13 R₁₁ = RA = A Based on the known variables, which two junctions should you consider to find the current I3? A 6.9965 61.5123 Ω Which loop will give you an equation with just R4 as the unknown? Did you follow the sign convention for the potential difference across each element in the loop? R₁ www 11 R₂ www R4 www 14 8 15 www R5 www R3arrow_forwardA car traveling at 42 km/h hits a bridge abutment. A passenger in the car moves forward a distance of 53 cm (with respect to the road) while being brought to rest by an inflated air bag. What magnitude of force (assumed constant) acts on the passenger's upper torso, which has a mass of 43 kg? Number i Unitsarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)