Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.51P
(a)
To determine
Final mass density of hydrogen, if the sheet material is left exposed to the air stream for a very long time.
(b)
To determine
Parameter to be evaluated and identified that can be used to determine whether the transient mass diffusion process in the sheet can be characterized by a uniform concentration at any time.
(c)
To determine
Time required to reduce the hydrogen concentration to twice the limiting value calculated in part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A tanker ship is transporting 0.798 kg/m3 of a rare gas in its tank. After the fill-up, the 1.94 m long pipe used to fill the tank was left open for 10.4 hours. In that time, 11.7 x10-4 kg of the gas diffuses out of the tank, almost nothing compared to the original quantity of gas in the tank. If the concentration of that gas in our atmosphere is typically zero, and the diffusion constant of that gas is 2.13 x10-5 m2/s, what is the cross-sectional area of the pipe?
Calculate μ, Cv, K, and Pr for oxygen at 100, 300, and 1000 K, and 1 atm. Compare your calculated
results with the values tabulated in most heat transfer textbooks to estimate the relative differences.
Help me
Chapter 14 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 14 - Assuming air to be composed exclusively O2 and N2...Ch. 14 - Consider an ideal gas mixture of n species. (a)...Ch. 14 - A mixture of CO2 and N2 is in a container at 25C ,...Ch. 14 - A He-Xe mixture containing 0.75 mole fraction of...Ch. 14 - Estimate values of the mass diffusivity for binary...Ch. 14 - Consider air in a closed, cylindrical container...Ch. 14 - An old-fashioned glass apothecary jar contains a...Ch. 14 - Consider the evaporation of liquid A into a column...Ch. 14 - An open pan of diameter 0.2 m and height 80mm...Ch. 14 - A spherical droplet of liquid A and radius...
Ch. 14 - The presence of a small amount of air may cause a...Ch. 14 - A laboratory apparatus to measure the diffusion...Ch. 14 - A thin plastic membrane is used to separate helium...Ch. 14 - Prob. 14.16PCh. 14 - Consider the radial diffusion of a gaseous species...Ch. 14 - Prob. 14.18PCh. 14 - Prob. 14.19PCh. 14 - Prob. 14.20PCh. 14 - Hydrogen at a pressure of 2 atm flows within a...Ch. 14 - Prob. 14.22PCh. 14 - Insulation degrades (experiences an increase in...Ch. 14 - Prob. 14.24PCh. 14 - Helium gas at 25°C and 4 bars is stored in a...Ch. 14 - Prob. 14.26PCh. 14 - An experiment is designed to measure the partition...Ch. 14 - Ultra-pure hydrogen is required in applications...Ch. 14 - Nitric oxide (NO) emissions from automobile...Ch. 14 - Pulverized coal pellets, which may be approximated...Ch. 14 - To enhance the effective surface, and hence the...Ch. 14 - A platinum catalytic reactor in an automobile is...Ch. 14 - A novel process has been proposed to create a...Ch. 14 - Consider a spherical organism of radius r0 within...Ch. 14 - Prob. 14.35PCh. 14 - Consider combustion of hydrogen gas in a mixture...Ch. 14 - Prob. 14.37PCh. 14 - As an employee of the Los Angeles Air Quality...Ch. 14 - Prob. 14.39PCh. 14 - A large sheet of material 4() mm thick contains...Ch. 14 - Prob. 14.41PCh. 14 - Prob. 14.43PCh. 14 - Prob. 14.44PCh. 14 - Prob. 14.46PCh. 14 - If an amount of energy Q0(J/m2) is released...Ch. 14 - The presence of CO2 in solution is essential to...Ch. 14 - Consider a DVD similar to that of Problem 5.99. To...Ch. 14 - Prob. 14.50PCh. 14 - Prob. 14.51PCh. 14 - Prob. 14.52PCh. 14 - Prob. 14.55PCh. 14 - A person applies an insect repellent onto an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardAir at 90°C and 1.00 atm (absolute) contains 10.0mole% water. A continuous stream of this air enters a compressor—condenser, in which the temperature is lowered to 15.6°C and the pressure, is raised to 3.00 atm. The air leaving the condenser is then heated isobarically to 100°C. Calculate the fraction of water that is condensed from the air, the relative humidity of the air at 100°C, and the ratio m3 outlet air at 100°C/m3 feed air at 90°C. Make a detailed flowchart with the unknowns and solve the degree of freedomarrow_forwardDetermine the binary diffusion coefficient of H₂ in air at 400 K and 0.8 atm in m²/s. 17.23x10-5 (B) 4.83x10-5 8.58x10-5 2.43x10-5arrow_forward
- A sheet of steel with 3.5-mm thickness has a nitrogen atmospheres on both sides at 900°C and is permitted to achieve a steady-state diffusion condition. The diffusion flux is found to be (1.0 ×10^-7 )kg/m^2×second.Also it is known that the concentration of nitrogen in steel at the high-pressure surface is 2 kg/m^3.How far into the sheet from this high-pressure side will the concentration be 0.5 kg/m^3?Assume a linear concentration profile.arrow_forwardAir at 90 0C and 1.00 atm (absolute) contains 10.0 mole% water. A continuous stream of this air enters a compressor–condenser, in which the temperature is lowered to 15.6 0C and the pressure is raised to 3.00 atm. The air leaving the condenser is then heated isobarically to 100 0C. Calculate the fraction of water that is condensed from the air, the relative humidity of the air at 100 0C, and the ratio m3 outlet air at 100 0C/m feed air at 90 0C.arrow_forwardTHRMOFLUID A 0.09m3 container is filled with 0.9kg of oxygen at a 2-64 pressure of 80 psia. What is the temperature of the oxygen?arrow_forward
- A poultry house in Mogobane, is made of 100mm fired clay bricks. In winter, the inside air temperature is 24°C and the relative humidity is 75%. The outside temperature is at 1°C and the relative humidity is 25%. Determine whether condensation will occur within this wall. If there is condensation, suggest mitigating measures and show that indeed the measures will work.arrow_forwardA product having a moisture content of 70% (wet basis) is dried in a tunnel-type dryer at a rate of 30 kg/hour. Drying air is supplied at a rate of 1000 kg air/hr at 60 °C and 5% RH, and exits the dryer at 25 °C, and the product is in equilibrium with the product at 40% RH. Determine the moisture content of the product coming out of the dryer, as well as the activity of the product water. a. Product moisture content = Answer % (wet basis). b. Water activity = arrow_forwardسحهثعقهكسنيتلتولوظزؤزظarrow_forward
- • Problem 1 • Air at 40 oC and 1 atm flows over a 5 m long wet plate with an average velocity of 2 m/s to dry the surface. Using analogy between heat and mass transfer. Determine the mass transfer coefficient on the plate. • Extra information: at 40 oC and 1 atm, v= 1.702 *10-5 T2.072 • DAB 1.87 x 10-5 X Parrow_forwardFrom an open water surface with air temperature 22°C, relative humidity is 40% and wind speed is 3 m/s, all measured at height 2 m above the water surface. Assume a roughness height of 0.03 cm. The net radiation is 200 W/m^2. Cp = 1005 J/kg-K A. Calculate the latent heat of vaporization (J/kg) B. Calculate the evaporation using Energy Balance Method (mm/day) C. Calculate the saturation deficit of the vapor pressure (Pa) D. Calculate the evaporation using Priestley-Taylor Method (mm/day)arrow_forwardWet sawdust will be dried using air on a circular tray with a diameter of 10 cm and the variation of moisture content over time will be examined. The heat transfer coefficient was calculated as 0.64 cal/min.cm2.°C and the mass transfer coefficient as 3.86 g/cm2.min during the constant speed drying interval lasting 10 minutes. Calculate the dry bulb temperature since the absolute humidity of the air used for drying is 0.018 g water/g dry matter and the wet bulb temperature is 25°C. Additional data: Enthalpy of evaporation of water: 2442.3 kj/kg at 25°C Vapor pressure of water: 23.76 mm Hg at 25°Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Diffusion in Solids; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=K_1QmKJvNjc;License: Standard youtube license