(a)
Interpretation:
Whether there is any advantage in processing the reactions at pressure above
Concept introduction:
For a multiple reaction system, the final moles for each of the components present in the products can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as
Where,
According to the Le’ Chatelier’s principle, if a reaction is subject to any change at its equilibrium, then the reaction tends to shift its equilibrium in the direction, so as to undo the effect of that change on its equilibrium.
(a)
Answer to Problem 14.34P
There is no advantage in processing the reactions at pressure above
Explanation of Solution
Given information:
The reaction for the production of “synthesis gas” by catalytic re-forming of methane with steam is given as ( i ) and the side reaction accompanying this is given as reaction ( ii ):
The equilibrium conditions given for these reactions are
For the given reaction to produce synthesis gas, let the extent of the reaction ( i ) be
The overall stoichiometric coefficients for both the reactions are
The individual stoichiometric coefficients for all the components in both the reactions are
The initial and final pressure of the system is taken as
Now, use equation (3) for the equilibrium constant of both the reactions and simplify the expressions as
The expression for the equilibrium constant for reaction ( i ) is dependent on pressure of the system. An increase in the pressure increases the equilibrium constant of the reaction. Thus, according to the Le’ Chatelier’s principle, to undo the effect of the increase in the products, the reaction shifts to the left toward the reactants. Thus, there is more of reactants present at the equilibrium providing no advantage of carrying the reactions at pressure above
(b)
Interpretation:
Whether there is any advantage in processing the reactions at temperatures below
Concept introduction:
According to the Le’ Chatelier’s principle, if a reaction is subject to any change at its equilibrium then the reaction tends to shift its equilibrium in the direction so as to undo the effect of that change on its equilibrium.
(b)
Answer to Problem 14.34P
The decrease in the equilibrium temperature of the reaction ( i ) does not provide any advantage as the equilibrium shifts towards the reactants with decreasing temperature for an endothermic reaction.
Explanation of Solution
Given information:
The reaction for the production of “synthesis gas” by catalytic re-forming of methane with steam is given as ( i ) and the side reaction accompanying this is given as reaction ( ii )
The equilibrium conditions given for these reactions are
From Table C.4 the standard heat of reaction and Gibb’s free energy for both the reactions are
Since, the reaction ( i ) is endothermic, the heat required during the reaction acts as one of the reactants of the reaction.
Decreasing the equilibrium temperature of the reaction below
(c)
Interpretation:
In the gas synthesis, the ratio of number of moles of hydrogen to carbon monoxide needs to be determined.
Concept introduction:
For a multiple reaction system, the final moles for each of the components present in the products can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
Gibb’s free energy in terms of equilibrium constant is written as:
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(c)
Answer to Problem 14.34P
The molar ratio of hydrogen to carbon monoxide in the synthesis gas
Explanation of Solution
Given information:
The reaction for the production of “synthesis gas” by catalytic re-forming of methane with steam is given as ( i ) and the side reaction accompanying this is given as reaction ( ii )
The equilibrium conditions given for these reactions are
Equimolar mixture of steam and methane is fed to the reactor.
From Table C.4 the standard heat of reaction and Gibb’s free energy for reaction ( i ) is
From Table C.1 the coefficients for the heat capacity of the component gases in reaction ( i ) are given as
Substance | | | | |
| | | | |
| | | | |
| | | | |
| | | | |
Now, use equations set (6) to evaluate the values of
Now, use equation (5) along with the above calculated values to get the value of
Use this calculated value of
From Table C.4 the standard heat of reaction and Gibb’s free energy for reaction ( ii ) is
From Table C.1 the coefficients for the heat capacity of the component gases in reaction ( ii ) are given as
Substance | | | | |
| | | | |
| | | | |
| | | | |
| | | | |
Now, use equations set (6) to evaluate the values of
Now, use equation (5) along with the above calculated values to get the value of
Use this calculated value of
The value of
Since, there is stoichiometric amount of
Accordingt o the stoichiometry of the reaction ( i ),
Therefore, the ratio of moles of
(d)
Interpretation:
In the gas synthesis, the molar ratio of hydrogen to carbon monoxide needs to be determined for the feed ratio of steam-to-methane equals to
Concept introduction:
For a multiple reaction system, the final moles for each of the components present in the products can be estimated by the equation,
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as
Where,
Gibb’s free energy in terms of equilibrium constant is written as
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(d)
Answer to Problem 14.34P
The molar ratio of hydrogen to carbon monoxide in the synthesis gas
Explanation of Solution
Given information:
The reaction for the production of “synthesis gas” by catalytic re-forming of methane with steam is given as ( i ) and the side reaction accompanying this is given as reaction ( ii )
The equilibrium conditions given for these reactions are
Molar ratio of steam and methane fed to the reactor is
From part (c), the value of
Moles of
For reaction ( ii ), initially
Let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is,
The individual stoichiometric coefficients for all the components in this reaction is
Using equation (1), write the expressions for final moles of all the components present in the products as gases in reaction ( ii )
Total moles of the products will be
Using equation (2) to write the mole fraction of all the species as
Now, use equation (3) and the calculated value of the equilibrium constant and calculate
Now, the ratio of
(e)
Interpretation:
The way to alter the feed composition to yield lower
Concept introduction:
According to the Le’ Chatelier’s principle, if a reaction is subject to any change at its equilibrium, then the reaction tends to shift its equilibrium in the direction so as to undo the effect of that change on its equilibrium.
(e)
Answer to Problem 14.34P
Addition of
Explanation of Solution
Given information:
The reaction for the production of “synthesis gas” by catalytic re-forming of methane with steam is given as ( i ) and the side reaction accompanying this is given as reaction ( ii )
The equilibrium conditions given for these reactions are
By adding
This leads to the increase in the amount of
(f)
Interpretation:
Whether there is any danger in the formation of solid carbon by the given side reaction at equilibrium conditions or not needs to be determined for conditions given in part (c) and part (d). Also, a way to alter the feed conditions to prevent this deposition needs to be explained.
Concept introduction:
For a single reaction system, the final moles of each of the components present, can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as
Where,
Gibb’s free energy in terms of equilibrium constant is written as
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(f)
Answer to Problem 14.34P
In part (c), there is danger of formation of solid carbon by the given side reaction at equilibrium conditions.
Addition of
In part (d), there is no danger of formation of solid carbon by the given side reaction at equilibrium conditions.
Explanation of Solution
Given information:
The reaction for the production of “synthesis gas” by catalytic re-forming of methane with steam is given as ( i ) and the side reaction accompanying this is given as reaction ( ii )
The equilibrium conditions given for these reactions are
At this equilibrium condition, the side reaction taking place to form carbon is
From Table C.4, the standard heat of reaction and Gibb’s free energy for the formation of carbon is
From Table C.1, the coefficients for the heat capacity of the component gases in carbon formation reaction are given as
Substance | | | | |
| | | | |
| | | | |
| | | | |
Now, use equations set (6) to evaluate the values of
Now, use equation (5) along with the above calculated values to get the value of
Use this calculated value of
This is the equilibrium constant for this reaction and if the actual value of this constant is greater than the equilibrium value, then the reaction tries to shift to the left and reduce the formation of carbon.
Calculate the actual value of this constant as
For the given reaction to produce carbon, let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is (for gases only),
The individual stoichiometric coefficients for all the gaseous components in this reaction is:
Use equation (3) which is applicable only for gaseous species, such that,
From part (c), the actual value of the mole fraction of
Calculate the ratio of the actual constant as:
As the actual value of
Addition of
From part (d), the actual value of the mole fraction of
Calculate the ratio of the actual constant as:
As the actual value of
Want to see more full solutions like this?
Chapter 14 Solutions
Introduction to Chemical Engineering Thermodynamics
- Using Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [196 kmol/hr]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. do not use chatgpt please, i did not understan from it thats why i paid for bartlebyarrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. please do not use chatgpt, i did not understand from it that is why i paid for this.arrow_forward
- We have a feed that is a binary mixture of methanol and water (55.0 mol% methanol) that is sent to a system of two flash drums hooked together. The vapor from the first drum is cooled, which partially condenses the vapor, and then is fed to the second flash drum. Both drums operate at a pressure of 1.0 atm and are adiabatic. The feed rate to the first drum is 1000.0 kmol/h. We desire a liquid product from the first drum that is 30.0 mol% methanol (x1 = 0.300). The second drum operates at a fraction vaporized of (V/F)2 = 0.250. The equilibrium data are in Table 2-8. Find the following for the first drum: y1, T1, (V/F)1, and vapor flow rate V1. Find the following for the second drum: y2, x2, T2, and vapor flow rate V2.arrow_forwardShow that the overall mass transfer coefficient, Ky, can be related to the individual gas and liquid film mass transfer coefficients, ky and kx, respectively, by the following equation: 1 K y = 1 + m kk y xarrow_forwardUse the approach given to solvearrow_forward
- Antoine constants for vapor pressure for n-pentane and n-hexane are listed in Table 2-3. a. Predict the vapor pressure at 0.0°C for pure n-pentane. b. Predict the boiling point of pure n-pentane at 3.0 atm pressure. c. Predict the boiling pressure if pure n-pentane is boiling at 0.0°C. d. At a pressure of 500.0 mm Hg and temperature of 30.0°C, predict the K values for n-pentane and n-hexane using Raoult’s law. e. If T = 30.0°C and p = 500.0 mm Hg, determine the mole fractions in the liquid and vapor phases of an equilibrium mixture of n-pentane and n-hexane. f. 1.0 moles of a mixture that is 75.0 mol% n-pentane and 25.0 mol% n-hexane is placed in a closed chamber. The pressure is adjusted to 500.0 mm Hg, and the temperature to 30.0°C. The vapor and liquid mole fractions were found in part e. How many moles of liquid and moles of vapor are there at equilibrium? g. If 1.0 mol/min of a mixture that is 75.0 mol% n-pentane and 25.0 mol% n-hexane is fed continuously to an equilibrium flash…arrow_forwardA 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3 answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?arrow_forwardIs a component with a lower vapor pressure more or less volatile than a component with a higher vapor pressure? Briefly explain.arrow_forward
- 3.3. Use the following crude assay data with crude API of 36 to estimate cut vol%, critical properties and molecular weight for Light Naphtha (90- 190 °F) and Kerosene (380-520 °F). In addition, calculate the fractions of paraffins, naphthenes and aromatics in the two cuts. ASTM D86 (°F) Volume % Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 302 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 482 8.0 31.4 0.8140 527 10.7 42.1 0.8250 584 5.0 47.1 0.8450 636 10.0 57.1 0.8540 689 7.8 64.9 0.8630 742 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20 8 002 09310 Iarrow_forwardProblem 1) A fractional factorial design has been used to study on the effect of 3 parameters including adsorbent concentration (300 and 500 ppm), pH value (4 and 10) and reaction time (6 and 12 hours) on the adsorption capacity of a composite for removing of methylene blue from a wastewater. If the results obtained for two repetitions of the tests are according to the following table, it is desirable: A) Design Resolution Y₁ Y₂ Run (mg/g) (mg/g) B) Drawing graphs of the effect of each parameter on the adsorption capacity 1 28 26 2 36 34 C) Analysis of interactions 3 18 20 D) Calculate the effects percentage of each parameter and error 4 32 30 E) Determining the optimum conditions to achieve the highest adsorption capacityarrow_forwardThermophysical Properties of Petroleum Fractions and Crude Ofls 67 3.4. A gas oil has the following TBP distillation data Volume % TBP (°C) 0 216 10 243 30 268 50 284 70 304 90 318 95 327 100 334 It also has an average boiling point of 280 °C and an average density of 0.850 g/cm³. (a) Split this gas oil fraction into five pseudo-components. Calculate T., Pc and w for each pseudo-component. (b) Calculate T, Pc and w for the whole gas oil fraction. (c) Calculate the enthalpy of this gas oil fraction at 400 °C using the Lee- Kessler correlation with a reference state of ideal gas at 273.15 K.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The