(a)
Interpretation:
Whether the molecule dimethylacetylene,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule, the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(b)
Interpretation:
Whether the molecule sulfur hexafluoride,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(c)
Interpretation:
Whether the molecule phosphate ion,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(d)
Interpretation:
Whether the molecule glycine,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(e)
Interpretation:
Whether the molecule cis
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(f)
Interpretation:
Whether the molecule trans
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
Trending nowThis is a popular solution!
Chapter 14 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- How will you prepare the following buffers? 2.5 L of 1.5M buffer, pH = 10.5 from NH4Cl and NH3arrow_forwardCH₂O and 22 NMR Solvent: CDCl3 IR Solvent: neat 4000 3000 2000 1500 1000 15 [ اند 6,5 9.8 3.0 7.0 6.0 5.0 4.8 3.0 2.0 1.0 9.8 200 100arrow_forwardprotons. Calculate the mass (in grams) of H3AsO4 (MW=141.9416) needed to produce 3.125 x 1026arrow_forward
- Using what we have learned in CHEM 2310 and up through class on 1/31, propose a series of reaction steps to achieve the transformation below. Be sure to show all reagents and intermediates for full credit. You do not need to draw mechanism arrows, but you do need to include charges where appropriate. If you do not put your group name, you will get half credit at most. ? Brarrow_forwardDraw a mechanism for the formation of 2-bromovanillin using bromonium ion as the reactive electrophile.arrow_forwardNonearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning