
CHEMISTRY-TEXT
8th Edition
ISBN: 9780134856230
Author: Robinson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.132MP
Interpretation Introduction
Interpretation:
The time required for decomposition of
Concept introduction:
Variation of reaction speed with temperature is represented by Arrhenius's equation as follows:
Here, A is a pre-exponential factor, R is gas constant, T is temperature, and k is the reaction rate coefficient,
If
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Name
Section
Score
Date
EXERCISE B
pH, pOH, pка, AND PKD CALCULATIONS
1. Complete the following table.
Solution
[H+]
[OH-]
PH
РОН
Nature of Solution
A
2 x 10-8 M
B
1 x 10-7 M
C
D
12.3
6.8
2. The following table contains the names, formulas, ka or pka for some common acids. Fill
in the blanks in the table. (17 Points)
Acid Name
Formula
Dissociation reaction
Ka
pka
Phosphoric acid
H₂PO₁
H3PO4
H++ H₂PO
7.08 x 10-3
Dihydrogen
H₂PO
H₂PO
H+ HPO
6.31 x 10-6
phosphate
Hydrogen
HPO₁
12.4
phosphate
Carbonic acid
H2CO3
Hydrogen
HCO
6.35
10.3
carbonate or
bicarbonate
Acetic acid
CH,COOH
4.76
Lactic acid
CH₂CHOH-
COOH
1.38 x 10
Ammonium
NH
5.63 x 10-10
Phenol
CH₂OH
1 x 10-10
Protonated form
CH3NH3*
3.16 x 10-11
of methylamine
Indicate whether it is true that Co(III) complexes are very stable.
MnO2 acts as an oxidant in the chlorine synthesis reaction.
Chapter 14 Solutions
CHEMISTRY-TEXT
Ch. 14 - Prob. 14.1PCh. 14 - Prob. 14.2ACh. 14 - The rate law for the reaction...Ch. 14 - Prob. 14.4ACh. 14 - The initial rates listed in the following...Ch. 14 - Prob. 14.6ACh. 14 - Prob. 14.7PCh. 14 - Prob. 14.8ACh. 14 - Prob. 14.9PCh. 14 - Prob. 14.10A
Ch. 14 - Prob. 14.11PCh. 14 - Prob. 14.12ACh. 14 - Prob. 14.13PCh. 14 - Prob. 14.14ACh. 14 - Consider the first-order decomposition of H2O2...Ch. 14 - Prob. 14.16ACh. 14 - Hydrogen iodide gas decomposes at 410 °C:...Ch. 14 - Prob. 14.18ACh. 14 - Thereaction NO2(g)+CO(g)NO(g)+CO2(g) occurs in one...Ch. 14 - Prob. 14.20ACh. 14 - Prob. 14.21PCh. 14 - Apply 13.22 The rate of the reaction...Ch. 14 - Prob. 14.23PCh. 14 - Prob. 14.24ACh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26ACh. 14 - Prob. 14.27PCh. 14 - Prob. 14.28ACh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.30ACh. 14 - Prob. 14.31PCh. 14 - Draw a potential energy diagram for the mechanism...Ch. 14 - Prob. 14.33PCh. 14 - Given the mechanism for an enzyme-catalyzed...Ch. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - At high substrate concentrations, the rate...Ch. 14 - Chymotrypsin is a digestive enzyme component of...Ch. 14 - Prob. 14.39CPCh. 14 - Prob. 14.40CPCh. 14 - Prob. 14.41CPCh. 14 - Prob. 14.42CPCh. 14 - Prob. 14.43CPCh. 14 - Prob. 14.44CPCh. 14 - Prob. 14.45CPCh. 14 - Prob. 14.46CPCh. 14 - Prob. 14.47CPCh. 14 - Prob. 14.48CPCh. 14 - Prob. 14.49CPCh. 14 - Use the data in Table 13.1 to calculate the...Ch. 14 - 13.50 Use the data in Table 13.1 to calculate the...Ch. 14 - Prob. 14.52SPCh. 14 - Prob. 14.53SPCh. 14 - From the plot of concentrationtime data in Figure...Ch. 14 - Prob. 14.55SPCh. 14 - Prob. 14.56SPCh. 14 - Prob. 14.57SPCh. 14 - Prob. 14.58SPCh. 14 - Prob. 14.59SPCh. 14 - Prob. 14.60SPCh. 14 - Prob. 14.61SPCh. 14 - Prob. 14.62SPCh. 14 - Prob. 14.63SPCh. 14 - Prob. 14.64SPCh. 14 - Prob. 14.65SPCh. 14 - Prob. 14.66SPCh. 14 - Prob. 14.67SPCh. 14 - The oxidation of iodide ion by hydrogen peroxide...Ch. 14 - Prob. 14.69SPCh. 14 - At 500 °C, cyclopropane (C3H6) rearranges to...Ch. 14 - The rearrangement of methyl isonitrile (CH3NC) to...Ch. 14 - What is the half-life (in minutes) of the reaction...Ch. 14 - Prob. 14.73SPCh. 14 - Prob. 14.74SPCh. 14 - Hydrogen iodide decomposes slowly to H2 and I2 at...Ch. 14 - What is the half-life (in minutes) of the reaction...Ch. 14 - Prob. 14.77SPCh. 14 - At 25 °C, the half-life of a certain first-order...Ch. 14 - The decomposition of N2O5 is a first-order...Ch. 14 - Prob. 14.80SPCh. 14 - Prob. 14.81SPCh. 14 - Prob. 14.82SPCh. 14 - Consider the following concentration-time data for...Ch. 14 - Trans-cycloheptene (C7H12), a strained cyclic...Ch. 14 - Thelight-stimulatedconversionof 11-cis-retinalto...Ch. 14 - Why don't all collisions between reactant...Ch. 14 - Prob. 14.87SPCh. 14 - Prob. 14.88SPCh. 14 - Prob. 14.89SPCh. 14 - The values of Ea=183 kJ/mol and E=9 kJ/mol have...Ch. 14 - Prob. 14.91SPCh. 14 - Consider three reactions with different values of...Ch. 14 - Prob. 14.93SPCh. 14 - Rate constants for the reaction...Ch. 14 - Prob. 14.95SPCh. 14 - Prob. 14.96SPCh. 14 - Prob. 14.97SPCh. 14 - If the rate of a reaction increases by a factor of...Ch. 14 - Prob. 14.99SPCh. 14 - Prob. 14.100SPCh. 14 - Rate constants for the reaction...Ch. 14 - Prob. 14.102SPCh. 14 - Poly(ethylene terephthalate) is a synthetic...Ch. 14 - Prob. 14.104SPCh. 14 - Prob. 14.105SPCh. 14 - Prob. 14.106SPCh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.108SPCh. 14 - Prob. 14.109SPCh. 14 - The thermal decomposition of nitryl chloride,...Ch. 14 - The substitution reactions of molybdenum...Ch. 14 - The reaction 2NO2(g)+F2(g)2NO2F(g) has a second...Ch. 14 - The decomposition of ozone in the upper atmosphere...Ch. 14 - Prob. 14.114SPCh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.116SPCh. 14 - Prob. 14.117SPCh. 14 - Prob. 14.118SPCh. 14 - Prob. 14.119SPCh. 14 - Prob. 14.120SPCh. 14 - Prob. 14.121SPCh. 14 - Prob. 14.122SPCh. 14 - Prob. 14.123SPCh. 14 - Consider the reaction 2NO(g)+O2(g)2NO2(g) . The...Ch. 14 - Concentration-time data for the conversion of A...Ch. 14 - Prob. 14.126MPCh. 14 - Prob. 14.127MPCh. 14 - Prob. 14.128MPCh. 14 - Prob. 14.129MPCh. 14 - Prob. 14.130MPCh. 14 - Prob. 14.131MPCh. 14 - Prob. 14.132MPCh. 14 - Prob. 14.133MPCh. 14 - Prob. 14.134MPCh. 14 - Polytetrafluoroethylene (Teflon) decomposes when...Ch. 14 - The reaction A is first order in the reactant A...Ch. 14 - Prob. 14.137MPCh. 14 - A 1.50 L sample of gaseous HI having a density of...Ch. 14 - The rate constant for the decomposition of gaseous...Ch. 14 - The rate constant for the first-order...Ch. 14 - Prob. 14.141MPCh. 14 - Prob. 14.142MPCh. 14 - At 791 K and relatively low pressures, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- In Potassium mu-dihydroxydicobaltate (III) tetraoxalate K4[Co2(C2O4)4(OH)2], indicate whether the OH ligand type is bidentate.arrow_forwardImagine an electrochemical cell based on these two half reactions with electrolyte concentrations as given below: Oxidation: Pb(s) → Pb2+(aq, 0.10 M) + 2 e– Reduction: MnO4–(aq, 1.50 M) + 4 H+(aq, 2.0 M) + 3 e– → MnO2(s) + 2 H2O(l) Calculate Ecell (assuming temperature is standard 25 °C).arrow_forward: ☐ + Draw the Fischer projection of the most common naturally-occurring form of aspartate, with the acid group at the top and the side chain at the bottom. Important: be sure your structure shows the molecule as it would exist at physiological pH. Click and drag to start drawing a structure. ✓arrow_forward
- For a silver-silver chloride electrode, the following potentials are observed: E°cell = 0.222 V and E(saturated KCl) = 0.197 V Use this information to find the [Cl–] (technically it’s the activity of Cl– that’s relevant here, but we’ll just call it “concentration” for simplicity) in saturated KCl.arrow_forwardA concentration cell consists of two Sn/Sn2+ half-cells. The cell has a potential of 0.10 V at 25 °C. What is the ratio of [Sn2+] (i.e., [Sn2+left-half] / [Sn2+right-half])?arrow_forwardElectrochemical cell potentials can be used to determine equilibrium constants that would be otherwise difficult to determine because concentrations are small. What is Κ for the following balanced reaction if E˚ = +0.0218 V? 3 Zn(s) + 2 Cr3+(aq) → 3 Zn2+(aq) + Cr(s) E˚ = +0.0218 Varrow_forward
- Consider the following half-reactions: Hg2+(aq) + 2e– → Hg(l) E°red = +0.854 V Cu2+(aq) + 2e– → Cu(s)E°red = +0.337 V Ni2+(aq) + 2e– → Ni(s) E°red = -0.250 V Fe2+(aq) + 2e– → Fe(s) E°red = -0.440 V Zn2+(aq) + 2e– → Zn(s) E°red = -0.763 V What is the best oxidizing agent shown above (i.e., the substance that is most likely to be reduced)?arrow_forwardCalculate the equilibrium constant, K, for MnO2(s) + 4 H+(aq) + Zn(s) → Mn2+(aq) + 2 H2O(l) + Zn2+(aq)arrow_forwardIn the drawing area below, draw the condensed structures of formic acid and ethyl formate. You can draw the two molecules in any arrangement you like, so long as they don't touch. Click anywhere to draw the first atom of your structure. A C narrow_forward
- Write the complete common (not IUPAC) name of each molecule below. Note: if a molecule is one of a pair of enantiomers, be sure you start its name with D- or L- so we know which enantiomer it is. molecule Ο C=O common name (not the IUPAC name) H ☐ H3N CH₂OH 0- C=O H NH3 CH₂SH H3N ☐ ☐ X Garrow_forward(Part A) Provide structures of the FGI products and missing reagents (dashed box) 1 eq Na* H* H -H B1 B4 R1 H2 (gas) Lindlar's catalyst A1 Br2 MeOH H2 (gas) Lindlar's catalyst MeO. OMe C6H1402 B2 B3 A1 Product carbons' origins Draw a box around product C's that came from A1. Draw a dashed box around product C's that came from B1.arrow_forwardClassify each of the amino acids below. Note for advanced students: none of these amino acids are found in normal proteins. X CH2 H3N-CH-COOH3N-CH-COO- H3N-CH-COO CH2 CH3-C-CH3 CH2 NH3 N NH (Choose one) ▼ (Choose one) S CH2 OH (Choose one) ▼ + H3N-CH-COO¯ CH2 H3N CH COO H3N-CH-COO CH2 오오 CH CH3 CH2 + O C CH3 O= O_ (Choose one) (Choose one) ▼ (Choose one) Garrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks Cole

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY