
CHEMISTRY-TEXT
8th Edition
ISBN: 9780134856230
Author: Robinson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 14.138MP
A 1.50 L sample of gaseous HI having a density of 0.0101 g/cm3 is heated at 410 °C. As time passes, theHI decomposes to gaseous H2 and I2. The rate law is
(a) What is the initial rate of production of 12 in molecules/min?
(b) What is the partial pressure of H2 after a reaction time of 8.00 h?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
b)
8.
Indicate whether the following carbocation rearrangements are likely to occur
Please explain your rational using 10 words or less
not likely to occur
• The double bond is still in the
Same position
+
Likely
to oc
occur
WHY?
-3
H3C
Brave
Chair Conformers. Draw the chair conformer of the following substituted
cyclohexane. Peform a RING FLIP and indicate the most stable
conformation and briefly explain why using 20 words or less.
CI
2
-cobs ??
MUST INDICATE H -2
-2
Br
EQ
Cl
OR
AT
Br
H&
most stable
WHY?
- 4
CH
12
Conformational Analysis. Draw all 6 conformers (one above each letter) of the
compound below looking down the indicated bond. Write the letter of the
conformer with the HIGHEST and LOWEST in energies on the lines provided.
NOTE: Conformer A MUST be the specific conformer of the structure as drawn below
-4 NOT
HOH
OH
3
Conformer A:
Br
OH
A
Samo
Br H
04
Br
H
H3
CH₂
H
anti
stagere
Br CH
clipsed
H
Brott
H
IV
H
MISSING 2
-2
B
C
D
E
F
X
6
Conformer with HIGHEST ENERGY:
13. (1
structure
LOWEST ENERGY:
Nomenclature. a) Give the systematic (IUPAC) name structure. b) Draw the
corresponding to this name. HINT: Do not forget to indicate stereochemistry
when applicable.
a)
८८
2
"Br
{t༐B,gt)-bemn€-nehpརི་ཚ༐lnoa
Parent name (noname)
4 Bromo
Sub = 2-methylethyl-4 Bromo nonane
b) (3R,4S)-3-chloro-4-ethyl-2,7-dimethyloctane
# -2
-2
in the scope of the SCH4U course! please show all steps as im still learning how to format my answers in the format given, thank you!
Chapter 14 Solutions
CHEMISTRY-TEXT
Ch. 14 - Prob. 14.1PCh. 14 - Prob. 14.2ACh. 14 - The rate law for the reaction...Ch. 14 - Prob. 14.4ACh. 14 - The initial rates listed in the following...Ch. 14 - Prob. 14.6ACh. 14 - Prob. 14.7PCh. 14 - Prob. 14.8ACh. 14 - Prob. 14.9PCh. 14 - Prob. 14.10A
Ch. 14 - Prob. 14.11PCh. 14 - Prob. 14.12ACh. 14 - Prob. 14.13PCh. 14 - Prob. 14.14ACh. 14 - Consider the first-order decomposition of H2O2...Ch. 14 - Prob. 14.16ACh. 14 - Hydrogen iodide gas decomposes at 410 °C:...Ch. 14 - Prob. 14.18ACh. 14 - Thereaction NO2(g)+CO(g)NO(g)+CO2(g) occurs in one...Ch. 14 - Prob. 14.20ACh. 14 - Prob. 14.21PCh. 14 - Apply 13.22 The rate of the reaction...Ch. 14 - Prob. 14.23PCh. 14 - Prob. 14.24ACh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26ACh. 14 - Prob. 14.27PCh. 14 - Prob. 14.28ACh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.30ACh. 14 - Prob. 14.31PCh. 14 - Draw a potential energy diagram for the mechanism...Ch. 14 - Prob. 14.33PCh. 14 - Given the mechanism for an enzyme-catalyzed...Ch. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - At high substrate concentrations, the rate...Ch. 14 - Chymotrypsin is a digestive enzyme component of...Ch. 14 - Prob. 14.39CPCh. 14 - Prob. 14.40CPCh. 14 - Prob. 14.41CPCh. 14 - Prob. 14.42CPCh. 14 - Prob. 14.43CPCh. 14 - Prob. 14.44CPCh. 14 - Prob. 14.45CPCh. 14 - Prob. 14.46CPCh. 14 - Prob. 14.47CPCh. 14 - Prob. 14.48CPCh. 14 - Prob. 14.49CPCh. 14 - Use the data in Table 13.1 to calculate the...Ch. 14 - 13.50 Use the data in Table 13.1 to calculate the...Ch. 14 - Prob. 14.52SPCh. 14 - Prob. 14.53SPCh. 14 - From the plot of concentrationtime data in Figure...Ch. 14 - Prob. 14.55SPCh. 14 - Prob. 14.56SPCh. 14 - Prob. 14.57SPCh. 14 - Prob. 14.58SPCh. 14 - Prob. 14.59SPCh. 14 - Prob. 14.60SPCh. 14 - Prob. 14.61SPCh. 14 - Prob. 14.62SPCh. 14 - Prob. 14.63SPCh. 14 - Prob. 14.64SPCh. 14 - Prob. 14.65SPCh. 14 - Prob. 14.66SPCh. 14 - Prob. 14.67SPCh. 14 - The oxidation of iodide ion by hydrogen peroxide...Ch. 14 - Prob. 14.69SPCh. 14 - At 500 °C, cyclopropane (C3H6) rearranges to...Ch. 14 - The rearrangement of methyl isonitrile (CH3NC) to...Ch. 14 - What is the half-life (in minutes) of the reaction...Ch. 14 - Prob. 14.73SPCh. 14 - Prob. 14.74SPCh. 14 - Hydrogen iodide decomposes slowly to H2 and I2 at...Ch. 14 - What is the half-life (in minutes) of the reaction...Ch. 14 - Prob. 14.77SPCh. 14 - At 25 °C, the half-life of a certain first-order...Ch. 14 - The decomposition of N2O5 is a first-order...Ch. 14 - Prob. 14.80SPCh. 14 - Prob. 14.81SPCh. 14 - Prob. 14.82SPCh. 14 - Consider the following concentration-time data for...Ch. 14 - Trans-cycloheptene (C7H12), a strained cyclic...Ch. 14 - Thelight-stimulatedconversionof 11-cis-retinalto...Ch. 14 - Why don't all collisions between reactant...Ch. 14 - Prob. 14.87SPCh. 14 - Prob. 14.88SPCh. 14 - Prob. 14.89SPCh. 14 - The values of Ea=183 kJ/mol and E=9 kJ/mol have...Ch. 14 - Prob. 14.91SPCh. 14 - Consider three reactions with different values of...Ch. 14 - Prob. 14.93SPCh. 14 - Rate constants for the reaction...Ch. 14 - Prob. 14.95SPCh. 14 - Prob. 14.96SPCh. 14 - Prob. 14.97SPCh. 14 - If the rate of a reaction increases by a factor of...Ch. 14 - Prob. 14.99SPCh. 14 - Prob. 14.100SPCh. 14 - Rate constants for the reaction...Ch. 14 - Prob. 14.102SPCh. 14 - Poly(ethylene terephthalate) is a synthetic...Ch. 14 - Prob. 14.104SPCh. 14 - Prob. 14.105SPCh. 14 - Prob. 14.106SPCh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.108SPCh. 14 - Prob. 14.109SPCh. 14 - The thermal decomposition of nitryl chloride,...Ch. 14 - The substitution reactions of molybdenum...Ch. 14 - The reaction 2NO2(g)+F2(g)2NO2F(g) has a second...Ch. 14 - The decomposition of ozone in the upper atmosphere...Ch. 14 - Prob. 14.114SPCh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.116SPCh. 14 - Prob. 14.117SPCh. 14 - Prob. 14.118SPCh. 14 - Prob. 14.119SPCh. 14 - Prob. 14.120SPCh. 14 - Prob. 14.121SPCh. 14 - Prob. 14.122SPCh. 14 - Prob. 14.123SPCh. 14 - Consider the reaction 2NO(g)+O2(g)2NO2(g) . The...Ch. 14 - Concentration-time data for the conversion of A...Ch. 14 - Prob. 14.126MPCh. 14 - Prob. 14.127MPCh. 14 - Prob. 14.128MPCh. 14 - Prob. 14.129MPCh. 14 - Prob. 14.130MPCh. 14 - Prob. 14.131MPCh. 14 - Prob. 14.132MPCh. 14 - Prob. 14.133MPCh. 14 - Prob. 14.134MPCh. 14 - Polytetrafluoroethylene (Teflon) decomposes when...Ch. 14 - The reaction A is first order in the reactant A...Ch. 14 - Prob. 14.137MPCh. 14 - A 1.50 L sample of gaseous HI having a density of...Ch. 14 - The rate constant for the decomposition of gaseous...Ch. 14 - The rate constant for the first-order...Ch. 14 - Prob. 14.141MPCh. 14 - Prob. 14.142MPCh. 14 - At 791 K and relatively low pressures, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- help me solve this HWarrow_forwardMolecules of the form AH2 can exist in two potential geometries: linear or bent. Construct molecular orbital diagrams for linear and bent CH2. Identify the relevant point group, include all of the appropriate symmetry labels and pictures, and fill in the electrons. Which geometry would you predict to be more stable, and why? (Please draw out the diagram and explain)arrow_forwardIndicate the variation in conductivity with concentration in solutions of strong electrolytes and weak electrolytes.arrow_forward
- The molar conductivity of a very dilute solution of NaCl has been determined. If it is diluted to one-fourth of the initial concentration, qualitatively explain how the molar conductivity of the new solution will compare with the first.arrow_forwardWhat does the phrase mean, if instead of 1 Faraday of electricity, Q coulombs (Q/F Faradays) pass through?arrow_forwardWhat characteristics should an interface that forms an electrode have?arrow_forward
- For a weak acid AcH, calculate the dissociated fraction (alpha), if its concentration is 1.540 mol L-1 and the concentration [H+] is 5.01x10-4 mol L-1.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forward
- If the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardDetermine the distance between the metal and the OHP layer using the Helm- holtz model when the electrode's differential capacitance is 145 μF cm². DATA: dielectric constant of the medium for the interfacial zone &r= lectric constant of the vacuum &0 = 8.85-10-12 F m-1 = 50, die-arrow_forwardDescribe a sequence of photophysical processes that can be followed by radiation adsorbed by a molecule in the ground state to give rise to phosphorescent emission.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning


Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY