Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.5, Problem 83P
The ball has a mass m and is attached to the cord of length I. The cord is tied at the top to a swivel and the ball is given a velocity v0. Show that the angle θ which the cord makes with the vertical as the ball travels around the circular path must satisfy the equation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The particle of mass m = 2.1 kg is attached to the light rigid rod of length L = 0.91 m, and the assembly rotates about a horizontal axis through O with a constant angular velocity θ˙θ˙ = ω = 2.9 rad/s. Determine the force T in the rod when θ = 28°. The force T is positive if in tension, negative if in compression.
Determine the force T in the rod when θ = 28°. The force T is positive if in tension, negative if in compression.
M
=
A frisbee is thrown such that its final angular velocity is w = 9 after being in flight for t = 2 s. As it
rad
S
flies, the wind applies a constant moment, causing the frisbee to rotate faster. If the frisbee was initially
at rest, determine the moment of the wind and the work done by said moment. Assume the frisbee can be
modelled as a disk with mass m = = 0.15 kg and that it rotates about its center of gravity G. The frisbee has
a radius of r = 0.12 m.
UM
=
N.m
r
J
G
M
The velocity of the 8-kg cylinder is 0.3 m∕s at a certain instant. The speed v after dropping an additional 1.5 m is 2.5 m/s. The mass of the grooved drum is 12 kg, its centroidal radius of gyration is k = 210 mm, and the radius of its groove is ri = 200 mm. The frictional moment at O is a constant 3 N∙m. Find the frictional force.
Chapter 13 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 13.4 - In each case, determine its velocity when t = 2 s...Ch. 13.4 - In each case, determine its velocity at s = 8 m if...Ch. 13.4 - Determine the initial acceleration of the 10-kg...Ch. 13.4 - Write the equations of motion in the x and y...Ch. 13.4 - The motor winds n the cable with a constant...Ch. 13.4 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13.4 - A spring of stiffness k = 500 N/m is mounted...Ch. 13.4 - The spring has a stiffness k = 200 N/m and is...Ch. 13.4 - Block B rests upon a smooth surface. If the...Ch. 13.4 - The 6-lb particle is subjected to the action of...
Ch. 13.4 - The two boxcars A and B have a weight of 20 000 lb...Ch. 13.4 - If the coefficient of kinetic friction between the...Ch. 13.4 - If the 50-kg crate starts from rest and achieves a...Ch. 13.4 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The speed of the 3500-lb sports car is plotted...Ch. 13.4 - The conveyor belt is moving at 4 m/s. If the...Ch. 13.4 - The conveyor belt is designed to transport...Ch. 13.4 - Determine the time needed to pull the cord at B...Ch. 13.4 - Cylinder B has a mass m and is hoisted using the...Ch. 13.4 - Block A has a weight of 8 lb and block B has a...Ch. 13.4 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13.4 - The motor lifts the 50-kg crate with an...Ch. 13.4 - The 75-kg man pushes on the 150-kg crate with a...Ch. 13.4 - The coefficient of kinetic friction is k, and the...Ch. 13.4 - A 40-lb suitcase slides from rest 20 ft down the...Ch. 13.4 - Solve Prob. 13-18 if the suitcase has an initial...Ch. 13.4 - If the coefficient of kinetic friction between...Ch. 13.4 - The conveyor belt delivers each 12-kg crate to the...Ch. 13.4 - The 50-kg block A is released from rest. Determine...Ch. 13.4 - If the supplied force F = 150 N, determine the...Ch. 13.4 - A 60-kg suitcase slides from rest 5 m down the...Ch. 13.4 - Solve Prob. 13-24 if the suitcase has an initial...Ch. 13.4 - The 1.5 Mg sports car has a tractive force of F =...Ch. 13.4 - The conveyor belt is moving downward at 4 m/s. If...Ch. 13.4 - At the instant shown the 100-lb block A is moving...Ch. 13.4 - Determine the velocity of the 200-lb crate when t...Ch. 13.4 - Determine the velocity of the 400-kg crate A when...Ch. 13.4 - The tractor is used to lift the 150-kg load B with...Ch. 13.4 - If the tractor travels to the right with an...Ch. 13.4 - Block A and B each have a mass m. Determine the...Ch. 13.4 - The 4-kg smooth cylinder is supported by the...Ch. 13.4 - The coefficient of static friction between the...Ch. 13.4 - If the spring is unstretched when s = 0 and the...Ch. 13.4 - Neglecting the mass of the rope and pulley, and...Ch. 13.4 - Determine the force in the cable when t = 5 s, if...Ch. 13.4 - An electron of mass m is discharged with an...Ch. 13.4 - The 400-lb cylinder at A is hoisted using the...Ch. 13.4 - What is their velocity at this instant?Ch. 13.4 - Block A has a mass mA and is attached to a spring...Ch. 13.4 - A parachutist having a mass m opens his parachute...Ch. 13.4 - Neglect the mass of the motor and pulleys.Ch. 13.4 - If the force exerted on cable AB by the motor is F...Ch. 13.4 - Blocks A and B each have a mass m. Determine the...Ch. 13.4 - Blocks A and Beach have a mass m. Determine the...Ch. 13.4 - If the board AC pushes on the block at an angle ...Ch. 13.4 - If a horizontal force P = 12lb is applied to block...Ch. 13.4 - A freight elevator, including its load, has a mass...Ch. 13.4 - The block A has a mass mA and rests on the pan B,...Ch. 13.5 - P13-5.Set up the n, t axes and write the equations...Ch. 13.5 - P13-6.Set up the n, b, t axes and write the...Ch. 13.5 - The block rests at a distance of 2 m from the...Ch. 13.5 - Prob. 8FPCh. 13.5 - A pilot weighs 150 lb and is traveling at a...Ch. 13.5 - The sports car is traveling along a 30 banked road...Ch. 13.5 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13.5 - The motorcycle has a mass of 0.5 Mg and a...Ch. 13.5 - Prob. 52PCh. 13.5 - Prob. 53PCh. 13.5 - The 2-kg block B and 15-kg cylinder A are...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - Cartons having a mass of 5 kg are required to move...Ch. 13.5 - Prob. 57PCh. 13.5 - Prob. 58PCh. 13.5 - Prob. 59PCh. 13.5 - Prob. 60PCh. 13.5 - At the instant B = 60, the boys center of mass G...Ch. 13.5 - A girl having a mass of 25 kg sits at the edge of...Ch. 13.5 - The pendulum bob B has a weight of 5 lb and is...Ch. 13.5 - The pendulum bob B has a mass m and is released...Ch. 13.5 - Determine the constant speed of the passengers on...Ch. 13.5 - A motorcyclist in a circus rides his motorcycle...Ch. 13.5 - The vehicle is designed to combine the feel of a...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - When it reaches the curved portion AB, it is...Ch. 13.5 - Determine the resultant normal and frictional...Ch. 13.5 - If he rotates about the z axis with a constant...Ch. 13.5 - Determine the maximum speed at which the car with...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - The box has a mass m and slides down the smooth...Ch. 13.5 - Prove that if the block is released from rest at...Ch. 13.5 - The cylindrical plug has a weight of 2 lb and it...Ch. 13.5 - When crossing an intersection, a motorcyclist...Ch. 13.5 - The airplane, traveling at a constant speed of 50...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - The 2-kg pendulum bob moves in the vertical plane...Ch. 13.5 - If it has a speed of 1.5 m/s when y = 0.2 m,...Ch. 13.5 - The ball has a mass m and is attached to the cord...Ch. 13.6 - If the attached spring has a stiffness k = 2...Ch. 13.6 - Determine the constant angular velocity of the...Ch. 13.6 - If = ( t2) rad, where t is in seconds, determine...Ch. 13.6 - The 2-Mg car is traveling along the curved road...Ch. 13.6 - The 0.2-kg pin P is constrained to move in the...Ch. 13.6 - If the cam is rotating at a constant rate of 6...Ch. 13.6 - Determine the magnitude of the resultant force...Ch. 13.6 - Determine the magnitude of the unbalanced force...Ch. 13.6 - Rod OA rotates counterclockwise with a constant...Ch. 13.6 - The boy of mass 40 kg is sliding down the spiral...Ch. 13.6 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13.6 - The arm is rotating at a rate of = 4 rad/s when ...Ch. 13.6 - If arm OA rotates with a constant clockwise...Ch. 13.6 - Determine the normal and frictional driving forces...Ch. 13.6 - A smooth can C, having a mass of 3 kg, is lifted...Ch. 13.6 - Prob. 96PCh. 13.6 - Prob. 97PCh. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - A car of a roller coaster travels along a track...Ch. 13.6 - The 0.5-lb ball is guided along the vertical...Ch. 13.6 - The ball of mass misguided along the vertical...Ch. 13.6 - Using a forked rod, a smooth cylinder P, having a...Ch. 13.6 - The pilot of the airplane executes a vertical loop...Ch. 13.6 - The collar has a mass of 2 kg and travels along...Ch. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - Solve Prob. 13-105 If the arm has an angular...Ch. 13.6 - The forked rod is used to move the smooth 2-lb...Ch. 13.6 - Prob. 108PCh. 13.6 - Rod OA rotates counterclockwise at a constant...Ch. 13.6 - Solve Prob. 13-109 if motion is in the vertical...Ch. 13.7 - If his speed is a constant vP = 80 ft/s, determine...Ch. 13.7 - The earth has an orbit with eccentricity 0.0167...Ch. 13.7 - Prob. 114PCh. 13.7 - Determine the speed of a satellite launched...Ch. 13.7 - Prob. 116PCh. 13.7 - Prove Keplers third law of motion. Hint: Use Eqs....Ch. 13.7 - Prob. 118PCh. 13.7 - Prob. 119PCh. 13.7 - Determine the constant speed of satellite S so...Ch. 13.7 - Prob. 121PCh. 13.7 - Prob. 122PCh. 13.7 - Prob. 123PCh. 13.7 - Prob. 124PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 127PCh. 13.7 - Prob. 128PCh. 13.7 - Prob. 129PCh. 13.7 - Prob. 130PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 132PCh. 13.7 - Prob. 3CPCh. 13.7 - If the trailer has a mass of 250 kg and coasts 45...Ch. 13.7 - The coefficient of kinetic friction between the...Ch. 13.7 - Block B rests on a smooth surface. If the...Ch. 13.7 - If the motor draws in the cable at a rate of v =...Ch. 13.7 - The ball has a mass of 30 kg and a speed v = 4 m/s...Ch. 13.7 - If the coefficient of static friction between the...Ch. 13.7 - If at the instant it reaches point A it has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The super-container vessel has a total mass displacement of 23000 long tons. This vessel towed by a tugboat with α=20⁰ angle with horizontal. If a constant tension is applied as F=320 kN by the tugboat, please calculate the time to bring the vessel to a speed of 2 knot from the rest. At these low speeds, please neglect the hull resistance that created by the motion. Note: (1 long tons = 1016.05 kg, 1 knot=1.151 mi/hr= 0.5144 m/s)arrow_forwardThe ball of mass m is guided along the vertical circular path r = 4cos(0)meters using the arm OA. If the arm has a constant angular velocity 0o = 1rad/s , determine the angle 0 < 45° at which the ball starts to leave the surface of the semicylinder. Neglect friction and the size of the ball. Enter the angle in degrees in the box below. Parrow_forwardDynamicarrow_forward
- The 4-lb collar is compressed against a spring a distance of 6 inches and then releasedfrom rest. The spring can be considered elastic and has a constant of k = 10 lb/in. Thespring is not adhered to the collar, and can be considered massless, so it will notextend into tension. Plot the acceleration of the collar as a function of x for x = 0 to 7 inches.What is the velocity as the collar leaves the spring?arrow_forwardThe spring is not stretched or compressed when “s=0.8m" and the 11 kg block which is subjected to a force of 105 N has a speed of 5.5 m/s down the smooth plane. Using "THE PRINCIPLE OF WORK AND ENERGY", find the distance "s" when the block STOPS. k = 200 N/m 5 m/s F = 100 N 30°arrow_forwardSolve it correctly please. Iarrow_forward
- ▾ Part A If the box strikes the smooth plate, which has a weight of 21 lb and is held in position by an unstretched spring of stiffness k = 470 lb/ft, determine the maximum compression imparted to the spring. Take e = 0.8 between the box and the plate. Assume that the plate slides smoothly. Express your answer using three significant figures and include the appropriate units. x = O HÅ Value Submit Request Answer Units ?arrow_forwardThe 245-kg glider Bis being towed by airplane A, which is flying horizontally with a constant speed of v = 183 km/h. The tow cable has a length r = 59 m and may be assumed to form a straight line. The glider is gaining altitude and when e reaches 14°, the angle is increasing at the constant rate 0 = 8 deg/s. At the same time the tension in the tow cable is 2370 N for this position. Calculate the aerodynamic lift L and drag D acting on the glider. Assume o = 10°. D B Aarrow_forwardThe spool, which has a mass of 2 kg. slides along the smooth horizontal spiral rod, r = (0.400) m, where is in radians. as shown in (Figure 1). Figure = 6 rad/s Part A If its angular rate of rotation is constant and equals 6 rad/s, determine the horizontal tangential force P needed to cause the motion, and the horizontal normal force component that the spool exerts on the rod at the instant 0=45° Express your answers in newtons using three significant figures separated by a comma. P, N= Submit Provide Feedback VG ΑΣΦvec 4 Request Answer → ?arrow_forward
- The mass of the ball is m = 20 kg and the length of the light rod is /= 0.52 m. The ball-rod assembly is free to rotate about a vertical axis through O. The carriage, rod, and ball are initially at rest with 0 = 0 when the carriage is given a constant acceleration ao = 5.4 m/s². Write an expression for the tension T in the rod as a function of 0 and calculate T for the position 0 = TT/2. Answers: T = i - ! Narrow_forwardThe particle of mass m = 2.4 kg is attached to the light rigid rod of length L = 0.77 m, and the assembly rotates about a horizontal axis through O with a constant angular velocity θ˙θ˙ = ω = 3.5 rad/s. Determine the force T in the rod when θ = 29°. The force T is positive if in tension, negative if in compression.arrow_forwardThe collar has a mass of 2 kg and is attached to the light spring, which has a stiffness of 30 N∕m and an unstretched length of 1.5 m. The collar is released from rest at A and slides up the smooth rod under the action of the constant 50-N force. Calculate the velocity v of the collar as it passes position B. Use a datum coinciding with B such that y axis is positive to the right and z axis is positive down.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY