Basic Chemistry
6th Edition
ISBN: 9780134878119
Author: Timberlake, Karen C. , William
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.3, Problem 25PP
Interpretation Introduction
Interpretation: The numerical value of Kc for the given reaction should be determined.
Concept Introduction:
The relationship between the concentration of products and reactants at equilibrium for a general reaction:
Where A, B, C, and D represents chemical species and a, b, c, and d are the coefficients for balanced reaction.
The equilibrium expression, Kc for reversible reaction is determined by multiplying the concentrations of products together and divided by the concentrations of the reactants. Each concentration is raised to the power that is equal to the coefficient in the balanced reaction. So, the expression is:
Square brackets represent the concentration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Basic Chemistry
Ch. 13.1 - Prob. 1PPCh. 13.1 - Prob. 2PPCh. 13.1 - In the following reaction, what happens to the...Ch. 13.1 - Prob. 4PPCh. 13.1 - Prob. 5PPCh. 13.1 - Prob. 6PPCh. 13.2 - What is meant by the term reversible reaction?Ch. 13.2 - Prob. 8PPCh. 13.2 - Which of the following are at equilibrium? a. The...Ch. 13.2 - Which of the following are not at equilibrium? a....
Ch. 13.2 - 13.11 The following diagrams show the chemical...Ch. 13.2 - Prob. 12PPCh. 13.3 - Write the equilibrium expression for each of the...Ch. 13.3 - Prob. 14PPCh. 13.3 - Prob. 15PPCh. 13.3 - Prob. 16PPCh. 13.3 - What is the numerical value of Kc for the...Ch. 13.3 - What is the numerical value of Kc for the...Ch. 13.3 - What is the numerical value of Kc for the...Ch. 13.3 - What is the numerical value of Kc for the...Ch. 13.3 - Prob. 21PPCh. 13.3 - Identify each of the following as a homogeneous or...Ch. 13.3 - Prob. 23PPCh. 13.3 - Prob. 24PPCh. 13.3 - Prob. 25PPCh. 13.3 - What is the numerical value of Kc for the...Ch. 13.4 - Prob. 27PPCh. 13.4 - Prob. 28PPCh. 13.4 - Indicate whether each of the following equilibrium...Ch. 13.4 - Indicale whether each of the following equilibrium...Ch. 13.4 - Prob. 31PPCh. 13.4 - The numerical value of the equilibrium constant,...Ch. 13.4 - Prob. 33PPCh. 13.4 - The numerical value of the equilibrium constant,...Ch. 13.5 - In the lower atmosphere, oxygen is converted to...Ch. 13.5 - Prob. 36PPCh. 13.5 - Hydrogen chloride can be made by reacting hydrogen...Ch. 13.5 - When heated, carbon monoxide reacts with water to...Ch. 13.5 - Use the following equation for the equilibrium of...Ch. 13.5 - Use the following equation for the equilibrium of...Ch. 13.5 - Prob. 41PPCh. 13.5 - Prob. 42PPCh. 13.6 - For each of the following slightly soluble ionic...Ch. 13.6 - For each of the following slightly soluble ionic...Ch. 13.6 - Prob. 45PPCh. 13.6 - Prob. 46PPCh. 13.6 - A saturated solution of silver carbonate, Ag2CO3 ,...Ch. 13.6 - Prob. 48PPCh. 13.6 - Calculate the molar solubility, S , of CuI if it...Ch. 13.6 - Calculate the molar solubility, S , of SnS if it...Ch. 13.6 - The CO2 level in the atmosphere has increased over...Ch. 13.6 - Prob. 52PPCh. 13 - Write the equilibrium expression for each of the...Ch. 13 - Write the equilibrium expression for each of the...Ch. 13 - Prob. 55UTCCh. 13 - Would the equilibrium constant, Ke , for the...Ch. 13 - Prob. 57UTCCh. 13 - Prob. 58UTCCh. 13 - Prob. 59APPCh. 13 - Prob. 60APPCh. 13 - For each of the following reactions, indicate if...Ch. 13 - For each of the following reactions, indicate if...Ch. 13 - Consider the reaction: (13.3) 2NH3(g)N2(g)+3H2(g)...Ch. 13 - Prob. 64APPCh. 13 - Prob. 65APPCh. 13 - Prob. 66APPCh. 13 - Prob. 67APPCh. 13 - According to Le Châtelier's principle, does the...Ch. 13 - Prob. 69APPCh. 13 - Prob. 70APPCh. 13 - The numerical value of the equilibrium constant,...Ch. 13 - The numerical value of the equilibrium constant,...Ch. 13 - For each of the following slightly soluble ionic...Ch. 13 - For each of the following slightly soluble ionic...Ch. 13 - Prob. 75APPCh. 13 - Prob. 76APPCh. 13 - Prob. 77APPCh. 13 - Prob. 78APPCh. 13 - What is the molar solubility, S , of CdS if it has...Ch. 13 - Prob. 80APPCh. 13 - Prob. 81CPCh. 13 - Prob. 82CPCh. 13 - Prob. 83CPCh. 13 - Indicate how each of the following will affect the...Ch. 13 - Prob. 85CPCh. 13 - Prob. 86CPCh. 13 - Prob. 87CPCh. 13 - Prob. 88CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations. (a) 2 H2O2(g) 2 H2O(g) + O2(g) (b) CO(g) + O2g CO2(g) (c) C(s) + CO2(g) 2 CO(g) (d) NiO(s) + CO(g) Ni(s) + CO2(g)arrow_forwardKc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardFor the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forward
- The decomposition of PCl5(g) to form PCl3(g) and Cl2(g) has Kc = 33.3 at a high temperature. If the initial concentration of PCl5 is 0.1000 M, what are the equilibrium concentrations of the reactants and products?arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardThe diagram represents an equilibrium mixture for the reaction N2(g) + O2(g) ⇌ 2 NO(g) Estimate the equilibrium constant.arrow_forward
- Kc for the decomposition of ammonium hydrogen sulfide is 1.8 104 at 25 C. NH4HS(s) NH3(g) + H2S(g) (a) When the pure salt decomposes in a flask, what are the equilibrium concentrations of NH3 and H2S? (b) If NH4HS is placed in a flask already containing 0.020 mol/L of NH3 and then the system is allowed to come to equilibrium, what are the equilibrium concentrations of NH3 and H2S?arrow_forwardWrite an equation for an equilibrium system that would lead to the following expressions (ac) for K. (a) K=(Pco)2 (PH2)5(PC2H6)(PH2O)2 (b) K=(PNH3)4 (PO2)5(PNO)4 (PH2O)6 (c) K=[ ClO3 ]2 [ Mn2+ ]2(Pcl2)[ MNO4 ]2 [ H+ ]4 ; liquid water is a productarrow_forwardConsider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H20(ℓ) ΔrH° = −1530.4 kJ/mol How will the amount of ammonia at equilibrium be affected by removing O2(g) without changing the total gas volume? adding N2(g) without changing the total gas volume? adding water without changing the total gas volume? expanding the container? increasing the temperature? Which of these changes (i to v) increases the value of K? Which decreases it?arrow_forward
- A mixture of SO2, O2, and SO3 at 1000 K contains the gases at the following concentrations: [SO2] = 5.0 103 mol/L, [O2] = 1.9 103 mol/L, and [SO3] = 6.9 103 mol/L. Is the reaction at equilibrium? If not, which way will the reaction proceed to reach equilibrium? 2 SO2(g) + O2(g) 2 SO3(g) Kc = 279arrow_forwardNitrosyl chloride, NOC1, decomposes to NO and Cl2 at high temperatures. 2 NOCl(g) ⇌ 2 NO(g) + Cl2(g) Suppose you place 2.00 mol NOC1 in a 1.00–L flask, seal it, and raise the temperature to 462 °C. When equilibrium has been established, 0.66 mol NO is present. Calculate the equilibrium constant Kc for the decomposition reaction from these data.arrow_forwardAn equilibrium mixture of SO2, O2, and SO3 at a high temperature contains the gases at the following concentrations: |SO2| = 3.77 103 mol/L, [O2] = 4.30 103 mol/L, and [SO3] = 4.13 103 mol/L. Calculate the equilibrium constant, Kc, for the reaction. 2 SO2(g) + O2(g) 2 SO3(g)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY