Concept explainers
A spacecraft of mass m describes a circular orbit of radius r1 around the earth. (a) Show that the additional energy ΔE that must be imparted to the spacecraft to transfer it to a circular orbit of larger radius r2 is
where M is the mass of the earth. (b) Further show that if the transfer from one circular orbit to the other is executed by placing the spacecraft on a transitional semielliptic path AB, the amounts of energy ΔEA and ΔEB which must be imparted at A and B are, respectively, proportional to r2 and r1:
Fig. P13.116
(a)
Show that additional energy
Answer to Problem 13.116P
The additional energy
Explanation of Solution
Given information:
The minimum distance between the center of the earth to the point A is
The maximum distance between the center of the earth to the point B is
The mass of the earth is M.
Calculation:
Show the figure with the force acting as in Figure (1).
The expression for the normal acceleration
The expression for calculating the geocentric force acting on the spacecraft when it is on the surface of earth (F) as follows:
Here, G is the universal gravitational constant and M is the mass of the earth.
Calculate the velocity of the circular orbit (v) by considering the force equilibrium by taking Newton’s second law using the relation:
Substitute
The expression for the kinetic energy in the circular orbit (T) as follows;
The expression for the potential energy in the circular orbit (V) as follows;
Calculate the energy required (E) for the spacecraft using the relation:
Substitute
Substitute
The expression for the energy required for the circular orbit of radius
The expression for the energy required for the circular orbit of radius
Calculate the addition energy imparted to the spacecraft to transfer it to circular orbit
Substitute
Therefore, the additional energy
(b)
Show the transfer from one circular orbit to the other is executed by placing the spacecraft on transitional semi elliptic path AB, the amounts of energy
Answer to Problem 13.116P
The amount of energy imparted at A
Explanation of Solution
Given information:
The minimum distance between the center of the earth to the point A is
The maximum distance between the center of the earth to the point B is
The mass of the earth is M.
Calculation:
Consider the circular orbit of radius
The expression for the velocity of the circular orbit
Calculate the kinetic energy at the circular orbit
Substitute
Consider that the after the spacecraft engines are fired and it is placed on a semi-elliptic path AB.
The expression or the principle of conservation of angular momentum at point A to the point B as follows:
The expression for the kinetic energy at point B
Here, m is the mass of the satellite.
The expression for the gravitational potential energy at point B
The expression for the kinetic energy of the orbit at point A
The expression for the gravitational potential energy at point A
The expression for the principle of conservation of energy at the point A to point P as follows:
Substitute
Substitute
Simplify the Equation,
Substitute
Calculate the kinetic energy in the semi elliptic path AB
Substitute
Calculate the additional energy
Substitute
Divide and Multiply by
Substitute
Calculate the kinetic energy in the semi elliptic path AB
Substitute
Calculate the additional energy
Substitute
Divide and Multiply by
Substitute
Therefore, the amount of energy imparted at A
Want to see more full solutions like this?
Chapter 13 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
- 7. In the following problems check to see if the set S is a vector subspace of the corresponding R. If it is not, explain why not. If it is, then find a basis and the dimension. (a) S = (b) S = {[],+,"} X1 x12x2 = x3 CR³ {[1], 4+4 = 1} CR³ X2arrow_forwardAAA Show laplace transform on 1; (+) to L (y(+)) : SY(s) = x (0) Y(s) = £ [lx (+)] = 5 x(+) · est de 2 -St L [ y (^) ] = So KG) et de D 2 D D AA Y(A) → Y(s) Ŷ (+) → s Y(s) -yarrow_forward1) In each of the following scenarios, based on the plane of impact (shown with an (n, t)) and the motion of mass 1, draw the direction of motion of mass 2 after the impact. Note that in all scenarios, mass 2 is initially at rest. What can you say about the nature of the motion of mass 2 regardless of the scenario? m1 15 <+ m2 2) y "L χ m1 m2 m1 בז m2 Farrow_forward
- 8. In the following check to see if the set S is a vector subspace of the corresponding Rn. If it is not, explain why not. If it is, then find a basis and the dimension. X1 (a) S = X2 {[2], n ≤ n } c X1 X2 CR² X1 (b) S X2 = X3 X4 x1 + x2 x3 = 0arrow_forward2) Suppose that two unequal masses m₁ and m₂ are moving with initial velocities V₁ and V₂, respectively. The masses hit each other and have a coefficient of restitution e. After the impact, mass 1 and 2 head to their respective gaps at angles a and ẞ, respectively. Derive expressions for each of the angles in terms of the initial velocities and the coefficient of restitution. m1 m2 8 m1 ↑ บา m2 ñ Вarrow_forwardThe fallowing question is from a reeds book on applied heat i am studying. Although the answer is provided, im struggling to understand the whole answer and the formulas and the steps theyre using. Also where some ov the values such as Hg and Hf come from in part i for example. Please explain step per step in detail thanks In an NH, refrigerator, the ammonia leaves the evaporatorand enters the cornpressor as dry saturated vapour at 2.68 bar,it leaves the compressor and enters the condenser at 8.57 bar with50" of superheat. it is condensed at constant pressure and leavesthe condenser as saturated liquid. If the rate of flow of the refrigerantthrough the circuit is 0.45 kglmin calculate (i) the compressorpower, (ii) the heat rejected to the condenser cooling water in kJ/s,an (iii) the refrigerating effect in kJ/s. From tables page 12, NH,:2.68 bar, hg= 1430.58.57 bar, hf = 275.1 h supht 50" = 1597.2Mass flow of refrigerant--- - - 0.0075 kgls 60Enthalpy gain per kg of refrigerant in…arrow_forward
- state the formulas for calculating work done by gasarrow_forwardExercises Find the solution of the following Differential Equations 1) y" + y = 3x² 3) "+2y+3y=27x 5) y"+y=6sin(x) 7) y"+4y+4y = 18 cosh(x) 9) (4)-5y"+4y = 10 cos(x) 11) y"+y=x²+x 13) y"-2y+y=e* 15) y+2y"-y'-2y=1-4x³ 2) y"+2y' + y = x² 4) "+y=-30 sin(4x) 6) y"+4y+3y=sin(x)+2 cos(x) 8) y"-2y+2y= 2e* cos(x) 10) y+y-2y=3e* 12) y"-y=e* 14) y"+y+y=x+4x³ +12x² 16) y"-2y+2y=2e* cos(x)arrow_forwardThe state of stress at a point is σ = -4.00 kpsi, σy = 16.00 kpsi, σ = -14.00 kpsi, Try = 11.00 kpsi, Tyz = 8.000 kpsi, and T = -14.00 kpsi. Determine the principal stresses. The principal normal stress σ₁ is determined to be [ The principal normal stress σ2 is determined to be [ The principal normal stress σ3 is determined to be kpsi. kpsi. The principal shear stress 71/2 is determined to be [ The principal shear stress 7½ is determined to be [ The principal shear stress T₁/, is determined to be [ kpsi. kpsi. kpsi. kpsi.arrow_forward
- Repeat Problem 28, except using a shaft that is rotatingand transmitting a torque of 150 N * m from the left bearing to the middle of the shaft. Also, there is a profile keyseat at the middle under the load. (I want to understand this problem)arrow_forwardProb 2. The material distorts into the dashed position shown. Determine the average normal strains &x, Ey and the shear strain Yxy at A, and the average normal strain along line BE. 50 mm B 200 mm 15 mm 30 mm D ΕΙ 50 mm x A 150 mm Farrow_forwardProb 3. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm. Determine the shear strain, Yxy, at A. Prob 4. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm. Determine the average normal strain & along the x axis. Prob 5. The triangular plate is fixed at its base, and its apex A is given a horizontal displacement of 5 mm. Determine the average normal strain &x along the x' axis. x' 45° 800 mm 45° 45% 800 mm 5 mmarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY