Concept explainers
A cam of mass M is in the shape of a circular disk of diameter 2R with an off-center circular hole of diameter R is mounted on a uniform cylindrical shaft whose diameter matches that of the hole (Fig. P1 3.78). a. What is the rotational inertia of the cam and shaft around the axis of the shaft? b. What is the rotational kinetic energy of the cam and shaft if the system rotates with angular speed ω around this axis?
(a)
The rotational inertia of the cam and shaft around the axis of the shaft.
Answer to Problem 78PQ
The rotational inertia of the cam and shaft around the axis of the shaft is
Explanation of Solution
Write the equation for the rotational inertia of the cam and shaft around the axis of the shaft.
Here,
Rotational inertia of the cam is the difference of the rotational inertia of the solid disk about an axis
Write the equation for the rotational inertia of the cam.
Here,
The rotational inertia of the solid disk bout an axis
Write the equation for
Here,
Write the equation for the rotational inertia of the disk about its center of mass.
Put the above equation in equation (III).
With half the radius, the cut away small disk has one-quarter the face area, one-quarter the volume and one-quarter the mass of the original solid disk.
Write the expression for the ratio of the mass of the small disk to the mass of the original solid disk.
Here,
Rewrite the above equation for
Write the equation for the rotational inertia of the small disk about an axis through its center of mass.
Here,
Put equation (V) in the above equation.
Put equations (IV) and (VI) in equation (II).
Write the equation for the mass of the cam.
Here,
Put equation (V) in the above equation.
Multiply and divide the right hand side of equation (VII) with
Put equation (VIII) in the denominator of the above equation.
Write the equation for the rotational inertia of the shaft.
Here,
Conclusion:
Put equations (IX) and (X) in equation in equation (I).
Therefore, the rotational inertia of the cam and shaft around the axis of the shaft is
(b)
The rotational kinetic energy of the cam and shaft if the system rotates with angular speed
Answer to Problem 78PQ
The rotational kinetic energy of the cam and shaft if the system rotates with angular speed
Explanation of Solution
Write the equation for the rotational kinetic energy of the cam and the shaft.
Here,
Write the equation for
Put equation (IX) in the above equation.
Write the equation for
Put equation (X) in the above equation.
Conclusion:
Put equations (XII) and (XIII) in equation (XI).
Therefore, the rotational kinetic energy of the cam and shaft if the system rotates with angular speed
Want to see more full solutions like this?
Chapter 13 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 sarrow_forwardStudents are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forward
- answer both questionarrow_forwardOnly part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forwardOnly Part B.) is necessaryarrow_forward
- A (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning