Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 72P
Two mass-spring systems have the same mass and the same total energy. The amplitude of system I is twice that of system 2. How do (a) their frequencies and (b) their maximum accelerations compare?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 13.1 - A typical human heart rate is about 65 beats per...Ch. 13.2 - Two identical mass-spring systems are displaced...Ch. 13.3 - What happens to the period of a pendulum if (l)...Ch. 13.4 - Figure 13.18 shows the paths traced in the...Ch. 13.5 - Two different mass-spring systems are oscillating...Ch. 13.6 - The figure shows displacement-versus-time graphs...Ch. 13.7 - The photo shows a wineglass shattering in response...Ch. 13 - Is a vertically bouncing ball an example of...Ch. 13 - The vibration frequencies of molecules are much...Ch. 13 - What happens to the frequency of a simple harmonic...
Ch. 13 - If the spring of a simple harmonic oscillator is...Ch. 13 - How does the frequency of a simple harmonic...Ch. 13 - How would the frequency of a horizontal massspring...Ch. 13 - When in its cycle is the acceleration of an...Ch. 13 - Explain how simple harmonic motion might be used...Ch. 13 - One pendulum consists of a solid rod of mass m and...Ch. 13 - The x- and y-components of motion of a body are...Ch. 13 - Why is critical damping desirable in a cars...Ch. 13 - Explain why the frequency of a damped system is...Ch. 13 - Opera singers have been known to break glasses...Ch. 13 - What will happen to the period of a massspring...Ch. 13 - How can a system have more than one resonant...Ch. 13 - Prob. 16ECh. 13 - A violin string playing the note A oscillates at...Ch. 13 - The vibration frequency of a hydrogen chloride...Ch. 13 - Write expressions for the displacement x(t) in...Ch. 13 - The top of a skyscraper sways back and forth,...Ch. 13 - A hummingbirds wings vibrate at about 45 Hz. Whats...Ch. 13 - A 200-g mass is attached to a spring of constant k...Ch. 13 - An automobile suspension has an effective spring...Ch. 13 - The quartz crystal in a watch executes simple...Ch. 13 - A 342-g mass is attached to a spring and undergoes...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - How long should you make a simple pendulum so its...Ch. 13 - At the heart of a grandfather clock is a simple...Ch. 13 - A 622-g basketball with 24.0-cm diameter is...Ch. 13 - A meter stick is suspended from one end and set...Ch. 13 - A wheel rotates at 600 rpm. Viewed from the edge,...Ch. 13 - The x- and y-components of an objects motion are...Ch. 13 - A 450-g mass on a spring is oscillating at 1.2 Hz....Ch. 13 - A torsional oscillator of rotational inertia 1.6...Ch. 13 - Youre riding in a friends 1400-kg car with bad...Ch. 13 - The vibration of a piano string can be described...Ch. 13 - A massspring system has b/m = 0/5, where b is the...Ch. 13 - A cars front suspension has a natural frequency of...Ch. 13 - A simple model for carbon dioxide consists of...Ch. 13 - Two identical massspring systems consist of 430-g...Ch. 13 - The human eye and muscles that hold it can be...Ch. 13 - A mass m slides along a frictionless horizontal...Ch. 13 - Prob. 44PCh. 13 - A physics student, bored by a lecture on simple...Ch. 13 - A pendulum of length L is mounted in a rocket....Ch. 13 - The protein dynein powers the flagella that propel...Ch. 13 - A mass is attached to a vertical spring, which...Ch. 13 - Derive the period of a simple pendulum by...Ch. 13 - A solid disk of radius R is suspended from a...Ch. 13 - A thin steel beam is suspended from a crane and is...Ch. 13 - A cyclist turns her bicycle upside down to repair...Ch. 13 - An object undergoes simple harmonic motion in two...Ch. 13 - The muscles that drive insect wings minimize the...Ch. 13 - A pendulum consists of a 320-g solid ball 15.0 cm...Ch. 13 - If Jane and Tarzan are initially 8.0 m apart in...Ch. 13 - A small mass measuring device (SMMD) used for...Ch. 13 - A thin, uniform hoop of mass M and radius R is...Ch. 13 - A mass m is mounted between two springs with...Ch. 13 - The equation for an ellipse is (x2/a2) + (y2/b2) =...Ch. 13 - Show that the potential energy of a simple...Ch. 13 - The total energy of a massspring system is the sum...Ch. 13 - A solid cylinder of mass M and radius R is mounted...Ch. 13 - A mass m is free to slide on a frictionless track...Ch. 13 - A 250-g mass is mounted on a spring of constant k...Ch. 13 - A harmonic oscillator is underdamped if the...Ch. 13 - A massless spring with k = 74 N/m hangs from the...Ch. 13 - A meter stick is suspended from a frictionless rod...Ch. 13 - A particle of mass m has potential energy given by...Ch. 13 - Two balls with the same unknown mass m are mounted...Ch. 13 - Two mass-spring systems with the same mass are...Ch. 13 - Two mass-spring systems have the same mass and the...Ch. 13 - A 500-g mass is suspended from a thread 45 cm long...Ch. 13 - A 500-g block on a frictionless, horizontal...Ch. 13 - Repeat Problem 64 for a small solid ball of mass M...Ch. 13 - Youre working on the script of a movie whose plot...Ch. 13 - A 1.2-kg block rests on a frictionless surface and...Ch. 13 - A disk of radius R is suspended from a pivot...Ch. 13 - Prob. 79PCh. 13 - Youre a structural engineer working on a design...Ch. 13 - Show that x(t) = a cos t bsin t represents simple...Ch. 13 - Youre working for the summer with an ornithologist...Ch. 13 - While waiting for your plane to take off, you...Ch. 13 - Youre working for a playground equipment company,...Ch. 13 - Youve inherited your great-grandmothers mantle...Ch. 13 - This problem explores the nonlinear pendulum...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The potential at the center of a uniformly charged ring is 45 kV, and 15 cm along the ring axis the potential i...
Essential University Physics: Volume 2 (3rd Edition)
When the switch in Fig. 25.25 is open, whats the voltage across the resistor? Across the switch? FIGURE 25.25 F...
Essential University Physics (3rd Edition)
C. Based on your observations of your tape segment and the tape segments of other members of your class, answer...
Tutorials in Introductory Physics
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
A plank, fixed to a sled at rest in frame S, is of length L0 and makes an angle of 0 with the xaxis. Later, the...
Modern Physics
41. A transformer has an input of 6 V and an output of 36 V. Show that if the input is changed to 12 V, the out...
Conceptual Physical Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forwardA simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forwardIf the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately [1 − (8π2n2)−1] times the frequency of the corresponding undamped oscillator.arrow_forward
- Reproduce Figures 3-10b and c for the same values given in Example 3.2, but instead let = 0.1 s1 and = rad. How many times does the system cross the x = 0 line before the amplitude finally falls below 102 of its maximum value? Which plot, b or c, is more useful for determining this number? Explain.arrow_forwardThe mechanical energy of an undamped block-spring system is constant as kinetic energy transforms to elastic potential energy and vice versa. For comparison, explain what happens to the energy of a damped oscillator in terms of the mechanical, potential, and kinetic energies.arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forward
- Plot a velocity resonance curve for a driven, damped oscillator with Q = 6, and show that the full width of the curve between the points corresponding to is approximately equal to ω0/6.arrow_forwardThe amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardFor a damped, driven oscillator, show that the average kinetic energy is the same at a frequency of a given number of octaves* above the kinetic energy resonance as at a frequency of the same number of octaves below resonance.arrow_forward
- The equations listed in Table 2.2 give position as a function of time, velocity as a function of time, and velocity as a function of position for an object moving in a straight line with constant acceleration. The quantity vxi appears in every equation. (a) Do any of these equations apply to an object moving in a straight line with simple harmonic motion? (b) Using a similar format, make a table of equations describing simple harmonic motion. Include equations giving acceleration as a function of time and acceleration as a function of position. State the equations in such a form that they apply equally to a blockspring system, to a pendulum, and to other vibrating systems. (c) What quantity appears in every equation?arrow_forwardC, N A uniform plank of length L and mass M is balanced on a fixed, semicircular bowl of radius R (Fig. P16.19). If the plank is tilted slightly from its equilibrium position and released, will it execute simple harmonic motion? If so, obtain the period of its oscillation.arrow_forwardAn automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY