Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 70CP
Why is the hydraulic jump sometimes used to dissipate
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A certain part of stainless-steelpiping of a water distribution system involves a parallel section.Both parallel pipes have a diameter of 30 cm. One of the branches (pipe A) is 1500 m long while the other branch (pipe B) is 2500 m long. If the flow rate through pipe A is 0.4 and 0.31 m3/s, respectively. Pipe A has a half-way-closed gate valve (KL= 3)while pipe B has a fully open globe valve (KL= 9), and the other minor losses are negligible. Determine the mechanical power of pump for the system.
A tube well fully penetrating a confined aquifer has a maximum discharge capacity of 3000 liters per minute. The thickness of the aquifer is 60m. Design the minimum length of the well screen, assuming the effective open area of the screen to be 17% and 2 the diameter of the screen to be 20 cm. Assume also the safe screen entrance velocity to be less than 2.75cm/sec.
A vertical channel of diameter 5 cm and length 10 m is conducting water in upward manner( water viscosity= 1x10 -6 m2/s , water density =1000 kg/m3 ). For the presence of laminar flow regime determine the maximum amount of flow rate approximately ( Use pi number as 3,14 )ANSWER: 0,09 kg/s
Chapter 13 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 13 - What is the driving force for flow in an open...Ch. 13 - How does open-channel flow differ from internal...Ch. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is normal depth? Explain how it is...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11CPCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 29PCh. 13 - Prob. 30EPCh. 13 - Prob. 31EPCh. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Prob. 42CPCh. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - A trapezoidal channel with a bottom width of 6 m....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 58EPCh. 13 - Prob. 59EPCh. 13 - Prob. 60PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - Prob. 62PCh. 13 - During uniform flow n open channels, the flow...Ch. 13 - Prob. 64PCh. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 67CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 73CPCh. 13 - Prob. 74CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 76PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - During a hydraulic jump in a wide channel, the...Ch. 13 - Prob. 92PCh. 13 - Prob. 93CPCh. 13 - Prob. 94CPCh. 13 - Prob. 95CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Prob. 100PCh. 13 - Prob. 101PCh. 13 - Prob. 102EPCh. 13 - Prob. 103PCh. 13 - Prob. 104PCh. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107EPCh. 13 - Prob. 108PCh. 13 - Prob. 109PCh. 13 - Prob. 111PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 113PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - Water flows in a canal at an average velocity of 6...Ch. 13 - Prob. 122PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 124PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 126PCh. 13 - Prob. 128PCh. 13 - Prob. 129PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 132EPCh. 13 - Prob. 133EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 138PCh. 13 - Prob. 139PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 141PCh. 13 - Prob. 142PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 145PCh. 13 - Prob. 146PCh. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 154PCh. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The water surface in reservoir B is 12m higher than the surface of reservoir C. A 40-cm diameter, 0.7km long iron-cast pipe carries water at 20°C from B to C. Determine discharge for this pipe? Friction factor for iron-cast pipe, f-0.018. Ke-0.5 and Kd=1.0, where: Ke - entrance coefficient; Kd- discharge coefficient. O A. 0.232m3/sec O B. 360L/sec OC.0.360m3/sec O D.0.336m3/secarrow_forwardA horizontal concrete pipe (material roughness = 1.3 mm) with diameter of 5 cm andlength of 300 m is used to transport acetic acid. The density and dynamic viscosity ofthe acetic acid is 1049 kg/m3and 0.001155 Pa.s. If the flow rate required for thetransportation is 30 litre per minute: Determine the required pump power to overcome the head loss using Moody chartand Colebrook-White equation; Determine the required pump power to overcome the head loss using Altshul’scorrelation as shown in the equation below; Compare the difference of pumping power between answers obtained in Q5(a) andQ5(b) and discuss the validity/accuracy for Altshul’s correlation.arrow_forwardFor a laminar flow in a circular tube, determine the kinetic energy correction factor a and the a² -r dp momentum correction factor B, the velocity profile is u = and the average velocity is 4µ dx half of the maximum velocity, the parameters are shown in figure 3.1 Figure 3.1 Cylindrical sleeve element as free body in circular tuberarrow_forward
- (a) Write about both fire point and demulsibility properties of the hydraulic fluid. (b) What is neutralisation number and give its importance in selecting the hydraulic fluid?arrow_forwardWater is transported by gravity through a 12-cmdiameter 800-m-long plastic pipe with an elevation gradient of 0.01 (i.e., an elevation drop of 1 m per 100 m of pipe length). Taking r = 1000 kg/m3 and n = 1 3 1026 m2/s for water, determine the flow rate of water through the pipe. If the pipe were horizontal, what would the power requirements be to maintain the same flow rate?arrow_forwardStraight 0.15 m diameter cast iron pipe with equivalent roughness e = 0.22 mm is used for water transportation from lake to a reservoir. The flow rate of water is 5 m3 min-1 and the total length of the pipe is 80 m. Assuming that water temperature is approximately 20°C determine the head loss in metres in the pipe. Provide the answer to three significant figures and enter the numerical value only (e.g. 0.123, 123, 123000, 0.0123, but not 0.0123 m) Partial credit is available for this question.arrow_forward
- How does open-channel flow differ from internal flow?arrow_forwardDetermine the rote at which the water level rises/decreases in an open container if the water coming in through a 0.1 m2 pipe has a velocity ol 0.5 m/s and the flow rate going out is 0.2 m3 /s. The container has a circular cross section with a diameter of 0.5m (see figure below) C.S. 0.5 m/s h(t) Q2 = 0.2 m/s A1 =0.1 m2arrow_forwardA 2-m-internal-diameter circular steel storm drain (n = 0.012) is to discharge water uniformly at a rate of 12 m3/s to a distance of 1 km. If the maximum depth is to be 1.5 m, determine the required elevation drop.arrow_forward
- I want a clear and detailed solution pleasarrow_forwardIn a layered soil shown in the Figure below: Given: Layer 1: H₁=2 m K₁=1x104 cm/s Ysat 20 kN/m³ Layer 2: H2=4 m K2=1x102 cm/s Ysat 19 kN/m³ The head of the water over the soil is assumed to be constant and is = 2 m. It is assumed that the seepage occurs vertically and the direction of flow is from top to bottom. Find: 1- The rate of water (discharge) flowing to the drainage layer in cm³/hr. (Take the cross sectional area of flow =1 m²) 2- The head loss from point A to B. (Point B is located at the middle of layer 1) 3- The total stress, the pore water pressure and the effective stress at point A and C. Direction of flow Ah 1.00 m Water 2.00 m 2.00 m A B1.00 m Layer 1 Fine Sand 4.00 m Layer 2 Coarse Sand. Drainage layerarrow_forwardIs it possible for subcritical flow to undergo a hydraulic jump? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Work, Energy, and Power: Crash Course Physics #9; Author: CrashCourse;https://www.youtube.com/watch?v=w4QFJb9a8vo;License: Standard YouTube License, CC-BY
Different Forms Of Energy | Physics; Author: Manocha Academy;https://www.youtube.com/watch?v=XiNx7YBnM-s;License: Standard Youtube License