Interpretation: The Lewis structures of the small compounds have to be found by using their Lewis dot structures of involving atoms and by following the octet rule.
Concept introduction: The arrangement of atoms that are bonded together determines its constitution and molecular formula of that particular compound. This concept is referred as structural isomers or in more modern term constitutional isomers. Each atom has a typical valency or valence which is defined as the ability of an atom to form a chemical bond with other atoms. For example, carbon has four valence or tetravalent that means carbon has the capacity to form four bonds with other elements or other atoms. Nitrogen atom is trivalent. Hydrogen is monovalent in nature.
Lewis dot structures are also called electron dot structures. The diagrams are named after Gilbert N. Lewis, who described them in his 1916 article entitled The Atom and the Molecule. The number of electrons present in the outermost shell of an atom that participate in forming
The Lewis structure of small compounds can be drawn by combining the Lewis dot structures of the atoms involved in the formation of that compound. In order to achieve complete noble gas configuration, octet rule is followed to find bonding nature of atoms. Octet means 8 electrons in their valence shells. The compounds which obey the octet rule are called stable compounds.
To find: The four constitutional isomers of C3H9N, their Lewis structures and the number of lone pair of electrons on the nitrogen atom in each isomer

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
ORGANIC CHEMISTRY-STUD.SOLNS.MAN+SG(LL)
- Nonearrow_forwardNonearrow_forwardIn the solid state, oxalic acid occurs as a dihydrate with the formula H2C2O4 C+2H2O. Use this formula to calculate the formula weight of oxalic acid. Use the calculated formula weight and the number of moles (0.00504mol) of oxalic acid in each titrated unknown sample recorded in Table 6.4 to calculate the number of grams of pure oxalic acid dihydrate contained in each titrated unknown sample.arrow_forward
- 1. Consider a pair of elements with 2p and 4p valence orbitals (e.g., N and Se). Draw their (2p and 4p AO's) radial probability plots, and sketch their angular profiles. Then, consider these orbitals from the two atoms forming a homonuclear л-bond. Which element would have a stronger bond, and why? (4 points)arrow_forwardWrite the reaction and show the mechanism of the reaction. Include the mechanism for formation of the NO2+ 2. Explain, using resonance structures, why the meta isomer is formed. Draw possible resonance structures for ortho, meta and para.arrow_forwardNonearrow_forward
- 3. A molecular form of "dicarbon", C2, can be generated in gas phase. Its bond dissociation energy has been determined at 599 kJ/mol. Use molecular orbital theory to explain why energy of dissociation for C₂+ is 513 kJ/mol, and that for C2² is 818 kJ/mol. (10 points)arrow_forward9.73 g of lead(IV) chloride contains enough Cl- ions to make ____ g of magnesium chloride.arrow_forward6. a) C2's. Phosphorus pentafluoride PF5 belongs to D3h symmetry group. Draw the structure of the molecule, identify principal axis of rotation and perpendicular (4 points) b) assume that the principal axis of rotation is aligned with z axis, assign symmetry labels (such as a1, b2, etc.) to the following atomic orbitals of the P atom. (character table for this group is included in the Supplemental material). 3s 3pz (6 points) 3dz²arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





