Concept explainers
List five common laboratory acids and their uses.
Interpretation:
Five common laboratory acids and their uses are to be determined.
Concept introduction:
Acids are the ions or molecules capable of losing proton or hydrogen ion
They are sour in taste and are good conductor of electricity.
They are corrosive in nature and produce hydrogen gas when reacted with metals.
There are generally of two types:
Strong acid: They are highly corrosive in nature, completely ionize in a solution, and may cause severe burns on the skin. Examples include hydrochloric acid (HCl), and so on.
Weak acid: They are mild in nature, partially ionize and rarely affect the skin. Examples include acetic acid
Answer to Problem 5E
Solution:
Hydrochloric Acid
Sulfuric Acid
Nitric Acid
Phosphoric Acid
Acetic Acid
Explanation of Solution
Five common acids and their uses as:
i) Hydrochloric Acid
Hydrochloric acid is also known as muriatic acid. This strong acid is highly corrosive in nature and causes severe burns, if it comes in contact with skin. It is a mono protic acid, means it ionizes to give a single proton. It ionizes completely that’s why it is categorized as strong acid.
The reaction is as follows:
Hydrochloric acid is routinely used in laboratories and in manufacturing industries. Some of its uses are as follows:
It effectively cleans the rust present on the metal surface. The reactive chloride ion
It used in food industry for preparation and purification of foods. For example, HCl plays an important role in preparation of gelatin, which is used as favoring agent, purification of common salt and so on.
It is used in refining of ores, that is, purification of an impure metal ore. The metals that are noble in nature are dissolved in aqua regia for refining process.
It is used for preparing house cleaning products for example glass cleaners, disinfectant cleaners and so on.
It is also present in our stomach where it performs many functions like killing microorganism etc.
ii) Sulfuric acid
Sulfuric acid is also called oil of vitriol or hydrogen sulfate. It is colorless, oily and corrosive acid and is widely used in laboratories and in industries. Sulfuric acid undergoes auto-protolysis, means proton transfer within identical molecules. It gives two proton on ionization.
The reaction is as follows:
Some of the applications of sulfuric acid are as follows:
It plays an important role in the production of fertilizers like ammonium sulfate
acid.
It also used in dye and pigment industry. Acid dyes are prepared from sulfuric acid. These dyes contain sulphonic groups, which are present as sodium sulfonic salts.
It is used for making of adhesives because the reaction which involves adhesives needs acidic medium. Sulfuric acid not only provides acidic medium to the reaction but also helps to precipitate the desirable product.
It is also used in manufacturing of other acids like hydrochloric acid, nitric acid, and so on.
iii) Nitric acid
Nitric acid is a toxic, corrosive and fuming liquid. It is colorless liquid but sometimes it shows yellow color due to decomposition nitrogen oxides and water.
Nitric acid readily dissociates in water.
The reaction is as follows:
The industrial applications of nitric acid are as follows:
It is chiefly used in fertilizer industry for the manufacturing of various fertilizers. Calcium ammonium nitrate
It plays major role in the manufacturing of explosives because of versatile functionality of nitro group present in it. It combines with sulfuric acid, generates nitronium ion which rapidly reacts with large number of different organic compounds and is able to form explosives such as tri-nitrotoluene and so on.
It is used in manufacturing of dyes, especially artificial dyes. Nitric acid generally helps manufacture aniline dyes that are chiefly used to dye silk, wood. These aniline dyes also act as a precursor for the formation of other dyes.
It is also used in manufacturing of toluene diisocyanate, a synthetic compound which is used in automobiles, carpet and furniture industries.
It is a component of aqua-regia which is used in cleaning of ornaments/metals.
iv) Phosphoric acid
Phosphoric acid is also called an orthophosphoric acid. It is colorless, odorless and a weak acid, which is generally solid at room temperature. It has three ionizable protons. Hence, it ionizes in three different steps, as follows:
Some industrial applications of phosphoric acid are as follows:
It has non-toxic and mild acidic nature thus, it is used in food industries for flavoring the food or beverages. It generally used in colas and jams to give a tangy flavor.
It is used in the fertilizer industry for manufacturing a number of fertilizers, such as super phosphoric acid is a fertilizer used in feed stock prepared by dehydrating of phosphoric acid.
It is also used as an intermediate in pharmaceutical industries. It is used by dentists for cleaning teeth and also used in anti-nausea medicines.
It is a key ingredient of industrial and household detergents. The phosphate forms complex soluble salts with calcium and magnesium ions present in hard water and prevent them from deposition on the surface to be cleaned.
v) Acetic acid
Acetic acid is named as ethanoic acid. It is a colorless liquid which is sour to taste and has a pungent smell. It is a weak acid and partially ionizes in water.
The reaction is as follows:
Some industrial applications of acetic acid are as follows:
Vinegar is generally considered an aqueous solution of acetic acid. It is prepared by addition of 10-15% of acetic acid along with small amount of sugar.
It is generally used in pickling of vegetables and other food stuffs in the form of vinegar. This not only provides tangy taste to the foods but also acts as a preservative.
It is a weak acid that offers corrosive properties while remaining environment friendly. The oil and gas industry utilize acetic acid for a number of applications, mainly oil well stimulation.
It is also used in rubber industry as the latex (milky fluid obtained from rubber trees) does not coagulate because of the negative charge present on the surface. Acetic acid neutralizes these charges and helps them to coagulate.
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry In Focus
- Please correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forward
- Five chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward
- 13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forward
- Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning