Chemical Principles
8th Edition
ISBN: 9781337247269
Author: Steven S. Zumdahl; Donald J. DeCoste
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 46E
The lattice energies of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The standard heat of formation of BaBr2BaBr2 is −−764 kJ/molkJ/mol. The first ionization energy of BaBa is 503 kJ/molkJ/mol and its second ionization energy is 965 kJ/molkJ/mol. The heat of sublimation of Ba[Ba(s)→Ba(g)]Ba[Ba(s)→Ba(g)] is 175 kJ/molkJ/mol. The bond energy of Br2Br2 is 193 kJ/molkJ/mol, the heat of vaporization of Br2(l)Br2(l) is 31 kJ/molkJ/mol, and the electron affinity of BrBr is −−325 kJ/molkJ/mol.
Calculate the lattice energy of BaBr2BaBr2.
Using the following data, calculate the lattice energy of calcium chloride:
Ca2+(g) + 2Cl– (g) → CaCl2(s) ΔHlattice = ?
Sublimation enthalpy of calcium ΔH = 177.8 kJ/mol
First ionization energy of calcium ΔH = 590.2 kJ/mol
Second ionization energy of calcium ΔH = 1144.2 kJ/mol
First electron affinity of chlorine ΔH = –349 kJ/mol
Heat of formation of CaCl2(s) ΔH = –795.4 kJ/mol
Bond energy of Cl2 (see Table 2)
Use Hess’s law to calculate the lattice energy of calcium chloride. set-up must show all the chemical equations and you must show how their H values add up to give your answer.
Suppose there is an element X which occurs naturally as X2(g).X2(g) + 2O2(g) → X2O4(g)ΔHof of O(g) is 249 kJ/molΔHof of X(g) is 458.5 kJ/molΔHof of X2O4(g) is 31 kJ/molThe X-X single bond energy is 116 kJ/molUse the above data to estimate the average bond energy in X2O4.
Give your answer to the nearest 1 kJ/mol.
Chapter 13 Solutions
Chemical Principles
Ch. 13 - Explain the electronegativity trends across a row...Ch. 13 - Prob. 2DQCh. 13 - Prob. 3DQCh. 13 - Prob. 4DQCh. 13 - Prob. 5DQCh. 13 - Prob. 6DQCh. 13 - Prob. 7DQCh. 13 - Prob. 8DQCh. 13 - Prob. 9DQCh. 13 - Arrange the following molecules from most to least...
Ch. 13 - Prob. 11DQCh. 13 - Prob. 12DQCh. 13 - Prob. 13ECh. 13 - Prob. 14ECh. 13 - An alternative definition of electronegativity...Ch. 13 - Prob. 16ECh. 13 - Without using Fig. 13.3, predict the order of...Ch. 13 - Without using Fig. 13.3, predict which bond in...Ch. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - Indicate the bond polarity (show the partial...Ch. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Prob. 25ECh. 13 - Prob. 26ECh. 13 - Prob. 27ECh. 13 - Prob. 28ECh. 13 - Prob. 29ECh. 13 - Prob. 30ECh. 13 - Prob. 31ECh. 13 - Give an example of an ionic compound where both...Ch. 13 - What noble gas has the same electron configuration...Ch. 13 - Which of the following ions have noble gas...Ch. 13 - Give three ions that are isoelectronic with...Ch. 13 - Prob. 36ECh. 13 - Predict the empirical formulas of the ionic...Ch. 13 - Which compound in each of the following pairs of...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Consider the following:...Ch. 13 - In general, the higher the charge on the ions in...Ch. 13 - Consider the following energy changes: a....Ch. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - The lattice energies of FeCl3,FeCl2,andFe2O3 are...Ch. 13 - Prob. 47ECh. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - Prob. 54ECh. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Prob. 59ECh. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - Prob. 62ECh. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Prob. 73ECh. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - Prob. 76ECh. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - Prob. 84ECh. 13 - Prob. 85ECh. 13 - Prob. 86ECh. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - Prob. 89ECh. 13 - Prob. 90ECh. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - Prob. 93ECh. 13 - Prob. 94ECh. 13 - Prob. 95ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Prob. 97ECh. 13 - Two variations of the octahedral geometry are...Ch. 13 - Prob. 99ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Which of the molecules in Exercise 96 have net...Ch. 13 - Prob. 102ECh. 13 - Give two requirements that should be satisfied for...Ch. 13 - What do each of the following sets of...Ch. 13 - Prob. 105ECh. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Prob. 108ECh. 13 - Prob. 109ECh. 13 - Which of the following molecules have net dipole...Ch. 13 - Prob. 111AECh. 13 - Prob. 112AECh. 13 - Prob. 113AECh. 13 - Prob. 114AECh. 13 - Prob. 115AECh. 13 - There are two possible structures of XeF2Cl2 ,...Ch. 13 - Prob. 117AECh. 13 - Prob. 118AECh. 13 - Prob. 119AECh. 13 - Prob. 120AECh. 13 - Prob. 121AECh. 13 - Prob. 122AECh. 13 - Prob. 123AECh. 13 - Prob. 124AECh. 13 - Prob. 125AECh. 13 - Prob. 126AECh. 13 - Prob. 127AECh. 13 - Prob. 128AECh. 13 - Prob. 129AECh. 13 - Prob. 130AECh. 13 - Prob. 131AECh. 13 - Prob. 132AECh. 13 - Prob. 133CPCh. 13 - Prob. 134CPCh. 13 - Given the following information: Heat of...Ch. 13 - Prob. 136CPCh. 13 - A promising new material with great potential as...Ch. 13 - Think of forming an ionic compound as three steps...Ch. 13 - Prob. 139CPCh. 13 - Prob. 140CPCh. 13 - Calculate the standard heat of formation of the...Ch. 13 - Prob. 142CPCh. 13 - Prob. 143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculate the lattice energy of potassium fluoride, KF, using the BornHaber cycle. Use thermodynamic data from Appendix C to obtain the enthalpy changes for each step. (Note: You will obtain a slightly different answer if you use values given in Chapter 8 for the ionization energy and electron affinity, which are energy values at 0 K rather than the enthalpy changes at 298 K.)arrow_forward7.107 How do the Lewis symbols for C, Si, and Ge reflect the similarity in their electron configurations?arrow_forwardWhich of the following compounds requires the most energy to convert one mole of the solid into separate ions? (a) MgO (b) SrO (c) KF (d) CsF (e) MgF2arrow_forward
- Arrange the following series of compounds in order of increasing lattice energies. (a) NaBr, NaCl, KBr (b) MgO, CaO, CaCl2 (c) LiF, BeF2, BeOarrow_forwardUsing the standard enthalpy of formation data in Appendix G, calculate the bond energy of the carbon-sulfur double bond in CS2.arrow_forwardConsider the reactions of silver metal, Ag(s), with each of the halogens: fluorine, F2(g), chlorine, Cl2(g), and bromine, Br2(l). What chapter data could you use to decide which reaction is most exothermic? Which reaction is that?arrow_forward
- Use the Born-Haber cycle to calculate the lattice energy of KF. [The heat of sublimation of K is 91.6 kJ·mol−1 and ΔfH(KF) = −567.3 kJ·mol−1. Bond enthalpy for F2 is 158.8 kJ·mol−1. Other data may be found in the Ionization Energies Table and the Electron Affinities Table.]arrow_forwardUse the following data to estimate Δ Hf° for barium chloride. Ba (s) + Cl2 (g) ⟶ BaCl2 (s) Lattice energy = -2056 kJ/mol First ionization energy of Ba = 503 kJ/mol Second ionization energy of Ba = 965 kJ/mol Electron affinity of Cl = -349 kJ/mol Bond energy of Cl2 = 239 kJ/mol Enthalpy of sublimation of Ba = 178 kJ/molarrow_forwardGiven the following information: Heat of sublimation of Li(s) = 166 kJ/mol Bond energy of HF = 565 kJ/mol Ionization energy of Li(g) = 520. kJ/mol Electron affinity of F(g) = –328 kJ/mol Lattice energy of LiF(s) = –1030 kJ/mol Bond energy of H2 = 432 kJ/mol Calculate the net change in energy for the following reaction: 2Li(s)+2HF(g)-> 2LiF(s) +H2(g) Change in energy = kJarrow_forward
- Based on the following information calculate the approximate lattice energy of MgCl2. The radius of Na+ is 1.5 times as large as Mg2+. The lattice energy for NaCl is 787 kJ/mole.arrow_forwardThe energy for the following reaction was measured to be -653.0 kJ/mol. K(g) + Cl(g) → KCl(s). Using this fact and data in the table below, calculate the enthalpy (in kJ/mol) required to separate the ions from the lattice for this reaction: KCl(s) → K⁺(g) + Cl⁻(g).arrow_forwardThe lattice energy of NaCl is 769 kJ/mole. Which of the following is a correct statement about NaCl? When one mole each of gaseous Nat and CI- ions form solid NaCl, 769 kJ of heat is consumed. It requires 769 kJ to separate one mole of solid NaCl into one mole of each gaseous Na* and CI- ions. It requires 769 kJ to separate one mole of solid NaCl into gaseous one mole of Na* and two moles of CI- ions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY