Chemical Principles
8th Edition
ISBN: 9781337247269
Author: Steven S. Zumdahl; Donald J. DeCoste
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 134CP
Interpretation Introduction
Interpretation: The Lewis structure for the caffeine needs to be drawn in which the formal charge of all the atoms is zero.
Concept Introduction: The Lewis structure or molecular skeleton is also known as electron dot structure. It is the complete representation of a molecule which shows all bonded atoms with their
In Lewis structures, all atoms are represented by their atomic symbols and chemical bonds by lines. The lone pairs or extra electrons on atoms must be represented as cross or dots.
To draw the Lewis structure or molecular skeleton, count total number of valence electrons and arrange them in such a way that all bonded atoms get octet configuration.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Germanium (Ge) is a semiconductor with a bandgap of 2.2 eV. How could you dope Ge to make it a p-type semiconductor with a larger bandgap?
Group of answer choices
It is impossible to dope Ge and have this result in a larger bandgap.
Dope the Ge with silicon (Si)
Dope the Ge with gallium (Ga)
Dope the Ge with phosphorus (P)
Which of the following semiconductors would you choose to have photons with the longest possible wavelengths be able to promote electrons to the semiconductor's conduction band?
Group of answer choices
Si
Ge
InSb
CdS
Which of the following metals is the only one with all of its bands completely full?
Group of answer choices
K
Na
Ca
Al
Chapter 13 Solutions
Chemical Principles
Ch. 13 - Explain the electronegativity trends across a row...Ch. 13 - Prob. 2DQCh. 13 - Prob. 3DQCh. 13 - Prob. 4DQCh. 13 - Prob. 5DQCh. 13 - Prob. 6DQCh. 13 - Prob. 7DQCh. 13 - Prob. 8DQCh. 13 - Prob. 9DQCh. 13 - Arrange the following molecules from most to least...
Ch. 13 - Prob. 11DQCh. 13 - Prob. 12DQCh. 13 - Prob. 13ECh. 13 - Prob. 14ECh. 13 - An alternative definition of electronegativity...Ch. 13 - Prob. 16ECh. 13 - Without using Fig. 13.3, predict the order of...Ch. 13 - Without using Fig. 13.3, predict which bond in...Ch. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - Indicate the bond polarity (show the partial...Ch. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Prob. 25ECh. 13 - Prob. 26ECh. 13 - Prob. 27ECh. 13 - Prob. 28ECh. 13 - Prob. 29ECh. 13 - Prob. 30ECh. 13 - Prob. 31ECh. 13 - Give an example of an ionic compound where both...Ch. 13 - What noble gas has the same electron configuration...Ch. 13 - Which of the following ions have noble gas...Ch. 13 - Give three ions that are isoelectronic with...Ch. 13 - Prob. 36ECh. 13 - Predict the empirical formulas of the ionic...Ch. 13 - Which compound in each of the following pairs of...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Consider the following:...Ch. 13 - In general, the higher the charge on the ions in...Ch. 13 - Consider the following energy changes: a....Ch. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - The lattice energies of FeCl3,FeCl2,andFe2O3 are...Ch. 13 - Prob. 47ECh. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - Prob. 54ECh. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Prob. 59ECh. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - Prob. 62ECh. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Prob. 73ECh. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - Prob. 76ECh. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - Prob. 84ECh. 13 - Prob. 85ECh. 13 - Prob. 86ECh. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - Prob. 89ECh. 13 - Prob. 90ECh. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - Prob. 93ECh. 13 - Prob. 94ECh. 13 - Prob. 95ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Prob. 97ECh. 13 - Two variations of the octahedral geometry are...Ch. 13 - Prob. 99ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Which of the molecules in Exercise 96 have net...Ch. 13 - Prob. 102ECh. 13 - Give two requirements that should be satisfied for...Ch. 13 - What do each of the following sets of...Ch. 13 - Prob. 105ECh. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Prob. 108ECh. 13 - Prob. 109ECh. 13 - Which of the following molecules have net dipole...Ch. 13 - Prob. 111AECh. 13 - Prob. 112AECh. 13 - Prob. 113AECh. 13 - Prob. 114AECh. 13 - Prob. 115AECh. 13 - There are two possible structures of XeF2Cl2 ,...Ch. 13 - Prob. 117AECh. 13 - Prob. 118AECh. 13 - Prob. 119AECh. 13 - Prob. 120AECh. 13 - Prob. 121AECh. 13 - Prob. 122AECh. 13 - Prob. 123AECh. 13 - Prob. 124AECh. 13 - Prob. 125AECh. 13 - Prob. 126AECh. 13 - Prob. 127AECh. 13 - Prob. 128AECh. 13 - Prob. 129AECh. 13 - Prob. 130AECh. 13 - Prob. 131AECh. 13 - Prob. 132AECh. 13 - Prob. 133CPCh. 13 - Prob. 134CPCh. 13 - Given the following information: Heat of...Ch. 13 - Prob. 136CPCh. 13 - A promising new material with great potential as...Ch. 13 - Think of forming an ionic compound as three steps...Ch. 13 - Prob. 139CPCh. 13 - Prob. 140CPCh. 13 - Calculate the standard heat of formation of the...Ch. 13 - Prob. 142CPCh. 13 - Prob. 143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); Reagents: H₂O (B); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); H₂O₂ / HO- (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI OH - α-α Br + enant Solvent Reagent(s) Solvent Reagent(s)arrow_forwardBased on concepts from Lecture 3-5, which of the following ionic compounds should be most soluble in water? Group of answer choices MgO BeO CaO BaOarrow_forwardFrom an energy standpoint, which two process - in the correct order - are involved in the dissolving of an ionic compound crystal? Group of answer choices Water coordination to the ions followed by sublimation into the gas phase Sublimation of the crystal into gas-phase ions followed by water coordination to the ions Ion dissociation from the crystal followed by water coordination to the ions Water coordination to the ions followed by ion dissociation from the crystalarrow_forward
- For which Group 2 metal (M), is this process the most exothermic? M2+(g) + O2−(g) + CO2(g) → MO(s) + CO2(g) Group of answer choices M = Sr M = Mg M = Ca M = Baarrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); R₂BH (6); H₂O₂ / HO- (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI Solvent Reagent(s) Solvent Reagent(s) HO OHarrow_forwardFor which of the following ionic compounds would you expect the smallest difference between its theoretical and experimental lattice enthalpies? (You may assume these all have the same unit cell structure.) Electronegativities: Ca (1.0), Fe (1.8), Mg (1.2), O (3.5), S (2.5), Zn (1.6) Group of answer choices ZnO MgS CaO FeSarrow_forward
- In the Born-Haber cycle for KCl crystal formation, what enthalpy component must be divided by two? Group of answer choices KCl(s) enthalpy of formation Ionization energy for K(g) K(s) sublimation enthalpy Cl2 bond dissociation enthalpyarrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); H₂O₂ / HO (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI хот Br Solvent Reagent(s) Solvent Reagent(s)arrow_forwardWhat is the correct chemical equation for the lattice formation reaction for CaBr2? Group of answer choices Ca2+(g) + 2 Br−(g) → CaBr2(s) ½ Ca2+(g) + Br−(g) → ½ CaBr2(s) Ca(s) + Br2(l) → CaBr2(s) Ca(s) + 2 Br−(g) → CaBr2(s)arrow_forward
- PLEASE ANSWER THE QUESTION!!!arrow_forward3. SYNTHESIS. Propose a sequence of synthetic steps (FGI) that convert the starting material (SM) into the Target molecule. For each FGI in your proposed synthesis, specify the reagents / conditions, and draw the product(s) of that FGI. DO NOT INCLUDE the FGI mxn in the answer you submit. If an FGI requires two reagent sets, specify the order in which the reagent sets are added, e.g., i) Hg(OAc)2 / H₂O; ii) NaBH4/MeOH. Indicate the stereochemistry (if any) of the products of each FGI. FGI 1. Me Starting Material Source of all carbons in the Target molecule (can use multiple copies) Me Me Target molecule + enantiomerarrow_forwardcurved arrows are used to illustate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction mechanism stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning


Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY