![Loose Leaf for Statistical Techniques in Business and Economics](https://www.bartleby.com/isbn_cover_images/9781260152647/9781260152647_largeCoverImage.gif)
Concept explainers
a.
Find the
Check whether a negative value of correlation coefficient is surprising or not.
Interpret the results.
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 43CE
The
Explanation of Solution
Step-by-step procedure to obtain the correlation coefficient using MegaStat software:
- In an EXCEL sheet enter the data values of x and y.
- Go to Add-Ins > MegaStat >
Correlation/Regression > Correlation matrix. - Enter Input
Range as $A$1:$B$33. - Click on OK.
Output obtained using MegaStat is given as follows:
The correlation coefficient is –0.384. Since the correlation coefficient is negative, there is a moderate
b.
Find the value of coefficient of determination and explain the relationship.
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 43CE
The coefficient of determination is 0.147.
Explanation of Solution
The coefficient of determination is the square of the correlation coefficient. From Part (a), the correlation coefficient is –0.384.
The coefficient of determination is as follows:
The value of coefficient of determination is 0.147. Therefore, 14.7% of variation in the dependent variable is explained by the independent variable.
c.
Test whether there is a negative association between the ‘point scored’ and ‘point allowed’ or not.
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 43CE
There is enough evidence to infer that there is a negative association between the ‘point scored’ and ‘point allowed’.
Explanation of Solution
Denote the population correlation as
The hypotheses are given below:
Null hypothesis:
That is, the correlation between ‘point scored’ and ‘point allowed’ is greater than or equal to zero.
Alternative hypothesis:
That is, the correlation between ‘point scored’ and ‘point allowed’ is negative.
Test statistic:
The test statistic is as follows:
Here, the
The test statistic is as follows:
The degrees of freedom is as follows:
Thus, the level of significance is 0.05.
Critical value:
Software procedure:
Step-by-step software procedure to obtain the critical value using EXCEL software:
- Open an EXCEL file.
- In cell A1, enter the formula “=T.INV (0.05, 30)”.
Output obtained using the EXCEL is given as follows:
From the EXCEL output, the critical value is –1.697
Decision rule:
Reject the null hypothesis H0, if
Conclusion:
The value of test statistic is –2.28 and the critical value is –1.697.
Here,
By the rejection rule, reject the null hypothesis.
Thus, there is enough evidence to infer that there is a negative association between the ‘point scored’ and ‘point allowed’.
d.
Test whether there is a negative association between the ‘point scored’ and ‘point allowed’ for each conference or not.
d.
![Check Mark](/static/check-mark.png)
Answer to Problem 43CE
There is a negative association between the ‘point scored’ and ‘point allowed’ in conference AFC.
There is no evidence that a negative association between the ‘point scored’ and ‘point allowed’ in conference NFC.
Explanation of Solution
Denote the population correlation as
For conference AFC:
The hypotheses are given below:
Null hypothesis:
That is, the correlation between ‘point scored’ and ‘point allowed’ is greater than or equal to zero in conference AFC.
Alternative hypothesis:
That is, the correlation between ‘point scored’ and ‘point allowed’ is negative in conference AFC.
Step-by-step procedure to obtain the correlation coefficient using MegaStat software:
- In an EXCEL sheet enter the data values of x and y.
- Go to Add-Ins > MegaStat > Correlation/Regression > Correlation matrix.
- Enter Input Range as $A$1:$B$17.
- Click on OK.
Output obtained using MegaStat is given as follows:
Test statistic:
The test statistic is as follows:
Here, the sample size is 16 and the correlation coefficient is –0.676.
The test statistic is as follows:
The degrees of freedom is as follows:
The level of significance is 0.05.
Critical value:
Software procedure:
Step-by-step software procedure to obtain the critical value using EXCEL software:
- Open an EXCEL file.
- In cell A1, enter the formula “=T.INV (0.05, 14)”.
Output obtained using EXCEL is given as follows:
From the EXCEL output, the critical value is –1.761
Decision rule:
Reject the null hypothesis H0, if
Conclusion:
The value of test statistic is –3.432 and the critical value is –1.761.
Here,
By the rejection rule, reject the null hypothesis.
Thus, there is enough evidence to infer that there is a negative association between the ‘point scored’ and ‘point allowed’ in conference AFC.
For conference NFC:
The hypotheses are given below:
Null hypothesis:
That is, the correlation between ‘point scored’ and ‘point allowed’ is greater than or equal to zero in conference NFC.
Alternative hypothesis:
That is, the correlation between ‘point scored’ and ‘point allowed’ is a negative in conference NFC.
Step-by-step procedure to obtain the correlation coefficient using MegaStat software:
- In an EXCEL sheet enter the data values of x and y.
- Go to Add-Ins > MegaStat > Correlation/Regression > Correlation matrix.
- Enter Input Range as $A$1:$B$17.
- Click on OK.
Output obtained using MegaStat is given as follows:
Test statistic:
The test statistic is as follows:
Here, the sample size is 16 and the correlation coefficient is –0.197.
The test statistic is as follows:
Conclusion:
The value of test statistic is –0.752 and the critical value is –1.761.
Here,
By the rejection rule, fail to reject the null hypothesis.
Thus, there is no enough evidence to infer that there is a negative association between the ‘point scored’ and ‘point allowed’ in conference NFC.
Want to see more full solutions like this?
Chapter 13 Solutions
Loose Leaf for Statistical Techniques in Business and Economics
- Please answer the questionsarrow_forward30. An individual who has automobile insurance from a certain company is randomly selected. Let Y be the num- ber of moving violations for which the individual was cited during the last 3 years. The pmf of Y isy | 1 2 4 8 16p(y) | .05 .10 .35 .40 .10 a.Compute E(Y).b. Suppose an individual with Y violations incurs a surcharge of $100Y^2. Calculate the expected amount of the surcharge.arrow_forward24. An insurance company offers its policyholders a num- ber of different premium payment options. For a ran- domly selected policyholder, let X = the number of months between successive payments. The cdf of X is as follows: F(x)=0.00 : x < 10.30 : 1≤x<30.40 : 3≤ x < 40.45 : 4≤ x <60.60 : 6≤ x < 121.00 : 12≤ x a. What is the pmf of X?b. Using just the cdf, compute P(3≤ X ≤6) and P(4≤ X).arrow_forward
- 59. At a certain gas station, 40% of the customers use regular gas (A1), 35% use plus gas (A2), and 25% use premium (A3). Of those customers using regular gas, only 30% fill their tanks (event B). Of those customers using plus, 60% fill their tanks, whereas of those using premium, 50% fill their tanks.a. What is the probability that the next customer will request plus gas and fill the tank (A2 B)?b. What is the probability that the next customer fills the tank?c. If the next customer fills the tank, what is the probability that regular gas is requested? Plus? Premium?arrow_forward38. Possible values of X, the number of components in a system submitted for repair that must be replaced, are 1, 2, 3, and 4 with corresponding probabilities .15, .35, .35, and .15, respectively. a. Calculate E(X) and then E(5 - X).b. Would the repair facility be better off charging a flat fee of $75 or else the amount $[150/(5 - X)]? [Note: It is not generally true that E(c/Y) = c/E(Y).]arrow_forward74. The proportions of blood phenotypes in the U.S. popula- tion are as follows:A B AB O .40 .11 .04 .45 Assuming that the phenotypes of two randomly selected individuals are independent of one another, what is the probability that both phenotypes are O? What is the probability that the phenotypes of two randomly selected individuals match?arrow_forward
- 53. A certain shop repairs both audio and video compo- nents. Let A denote the event that the next component brought in for repair is an audio component, and let B be the event that the next component is a compact disc player (so the event B is contained in A). Suppose that P(A) = .6 and P(B) = .05. What is P(BA)?arrow_forward26. A certain system can experience three different types of defects. Let A;(i = 1,2,3) denote the event that the sys- tem has a defect of type i. Suppose thatP(A1) = .12 P(A) = .07 P(A) = .05P(A, U A2) = .13P(A, U A3) = .14P(A2 U A3) = .10P(A, A2 A3) = .011Rshelfa. What is the probability that the system does not havea type 1 defect?b. What is the probability that the system has both type 1 and type 2 defects?c. What is the probability that the system has both type 1 and type 2 defects but not a type 3 defect? d. What is the probability that the system has at most two of these defects?arrow_forwardThe following are suggested designs for group sequential studies. Using PROCSEQDESIGN, provide the following for the design O’Brien Fleming and Pocock.• The critical boundary values for each analysis of the data• The expected sample sizes at each interim analysisAssume the standardized Z score method for calculating boundaries.Investigators are evaluating the success rate of a novel drug for treating a certain type ofbacterial wound infection. Since no existing treatment exists, they have planned a one-armstudy. They wish to test whether the success rate of the drug is better than 50%, whichthey have defined as the null success rate. Preliminary testing has estimated the successrate of the drug at 55%. The investigators are eager to get the drug into production andwould like to plan for 9 interim analyses (10 analyzes in total) of the data. Assume thesignificance level is 5% and power is 90%.Besides, draw a combined boundary plot (OBF, POC, and HP)arrow_forward
- Please provide the solution for the attached image in detailed.arrow_forward20 km, because GISS Worksheet 10 Jesse runs a small business selling and delivering mealie meal to the spaza shops. He charges a fixed rate of R80, 00 for delivery and then R15, 50 for each packet of mealle meal he delivers. The table below helps him to calculate what to charge his customers. 10 20 30 40 50 Packets of mealie meal (m) Total costs in Rands 80 235 390 545 700 855 (c) 10.1. Define the following terms: 10.1.1. Independent Variables 10.1.2. Dependent Variables 10.2. 10.3. 10.4. 10.5. Determine the independent and dependent variables. Are the variables in this scenario discrete or continuous values? Explain What shape do you expect the graph to be? Why? Draw a graph on the graph provided to represent the information in the table above. TOTAL COST OF PACKETS OF MEALIE MEAL 900 800 700 600 COST (R) 500 400 300 200 100 0 10 20 30 40 60 NUMBER OF PACKETS OF MEALIE MEALarrow_forwardLet X be a random variable with support SX = {−3, 0.5, 3, −2.5, 3.5}. Part ofits probability mass function (PMF) is given bypX(−3) = 0.15, pX(−2.5) = 0.3, pX(3) = 0.2, pX(3.5) = 0.15.(a) Find pX(0.5).(b) Find the cumulative distribution function (CDF), FX(x), of X.1(c) Sketch the graph of FX(x).arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)