Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 2P
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the escape velocity (in km/s) from the surface of a 1.5 M neutron star? From a 3.0 M neutron star? (Hint: Use the formula for escape velocity,
Ve =
2GM
r
;
make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 ✕ 1030 kg.)
1.5 M neutron star km/s3.0 M neutron star km/s
Assuming that at the end of the He burning phase of the stellar core (r < R_core) has no H or He or other metals and is composed completely of Carbon, X=Y=0, X_c = 1 ; The envelope above the core has a normal stellar composition ( r > R_core). Calculate the length of time in years that a 1M_sol and 10M_sol star will live on the horizontal branch or the time between the start and end of the He burning phase. Assume that the normal relationship between mass and luminosity holds for horizontal branch stars. Please be as detailed as possible
If an X-ray binary consists of a 10-solar-mass star and a neutron star orbiting each other every 20.8 days, what is their average separation? (Hints: Use the version of Kepler's third law for binary stars, M, + M3 = ; make sure you express quantities in units of AU,
solar masses, and years. Assume the mass of the neutron star is 1.6 solar masses.)
a3
AU
Chapter 13 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQ
Ch. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 18RQCh. 13 - Prob. 19RQCh. 13 - Prob. 20RQCh. 13 - Prob. 21RQCh. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 24RQCh. 13 - Prob. 25RQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Add a fourth column to Table 13-1 and write in the...Ch. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 2SOPCh. 13 - Prob. 1LTLCh. 13 - Prob. 2LTLCh. 13 - Prob. 3LTLCh. 13 - Prob. 4LTLCh. 13 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the escape velocity (in km/s) from the surface of 1.1 M neutron star? (hint: Use the formula for the escape velocity Ve = 2GM/R ; make sure to express quantities in United of meters, kilograms, and seconds. Assume a neutron has a radius of 11 km and assume the mass of the sun is 1.99 x10^30 kg.) 1.1 M neutron Star = _________ km/s 3.0 neutron Star = __________ km/sarrow_forwardIf an X-ray binary consists of a 16 solar mass star and a neutron Star orbiting each other every 15.4 days, what is their average separation? (Hint: Use the version of Keller's third law for binary stars, Ma + Mb = a^3 /p^2 ; make sure you express quantities in unites of AU, solar masses, and years. Assume the mass of a neutron Star is 1.6 solar masses.) ___________ AUarrow_forwardIf a circular accretion disk around a 1.4 M, neutron star has a radius of 8.00 x 10° km as measured from the center of the neutron star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is GM 1.99 x 1030 kg. Hint: Use the circular orbit velocity formula, V. = -; make sure to express quantities in units of meters, kilograms, and seconds.) km/sarrow_forward
- For a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W). (Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)arrow_forwardA planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs? First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs So we first need to convert the rate into pc/s and the time into seconds: vpc/s = vkm/s (1 pc / 3.09 x 1013km) vpc/s = ? Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr) Ts = ? s Δd= vpc/sTs Therefore, Δd = ? pcarrow_forwardIf a circular accretion disk around a 1.4 M neutron Star has a radius of 5.00 x 10^5 km as measured from the center of the neutron Star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is 1.99 x 10^30 kg. Hint: Use the circular orbit velocity formula, Vc = GM/R ; make sure to express quantities in units, meters, kilograms, & seconds.) ________ km/sarrow_forward
- Calculate the Kepler speed grazing the surface of a) a white dwarf, b) a neutron star. Give your answers in terms of the speed of light. (Take RNS = 10 km, RWD = 10 000 km, and MWD = MNS = 1 Msun.)arrow_forwardA 1.8 M neutron and a 0.7 M white dwarf have been found orbiting each other with a period of 28 minutes. What is their average separation? Convert your answer to units of the Suns radius, which is 0.0047 AU. (hint: Use the version of Keller's third law for the binary stars Ma + Mb = a^3/p^2 ; make sure you express quantities in unites of AU, solar masses, and years. NOTE: a year is 3.2 x 10^7 s) ___________ solar radiiarrow_forwardA red giant loses a solar mass in 150,000 years via a superwind. After 0.9 million years, it has a mass of 9.5MSun. What was its original mass? (Give your answer in terms of MSun.) A planetary nebula expands at 38 km/s. How far will it expand (in km) in 3 million years?arrow_forward
- If a 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun neutron star? (Use the mass-radius relationship R ∝ M−1/3) What is the escape velocity (in km/s) from the surface of a 1.5 M neutron star? From a 3.0 M neutron star? (Hint: Use the formula for escape velocity, Ve = 2GM r ; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 ✕ 1030 kg.) 1.5 M neutron star km/s3.0 M neutron star km/sarrow_forwardThe star HD 93250 in the Carina Nebula is a bright O-type star. It has a reported apparent magnitude in the V band of mV = 7.41 and V band absolute magnitude of MV = −6.14. Using these values calculate the distance to HD 93250 in parsec. The distance to HD 93250 has been measured by other means as 2350 pc. Compare your calculated value of the distance with the measured value, and give a possible explanation for any difference. Calculate the value of the interstellar extinction in the V band AV that would account for the difference in the distances. The parameter E(B − V ) = AB − AV , where AB and AV are the extinctions in the B and V bands, is often used to characterize interstellar extinction. For the star HD 93250 the value E(B − V ) = 0.48 has been measured. Given the above value of E(B − V ) for HD 93250, calculate the extinction in the B band, and explain why the parameter E(B − V ) is often called the “reddening.” The B band apparent magnitude of HD 93250 is mB = 8.12. Calculate…arrow_forwardIn a star of 1 solar mass (M☉), the core hydrogen burning phase, also known as the main sequence phase, lasts for approximately 10 billion years. Suppose there's a star of 15 solar masses (M☉). Stars of higher mass burn through their hydrogen at a faster rate, following an approximate relation that the lifetime of a star on the main sequence (T) is proportional to its mass (M) raised to the power of -2.5 (T ∝ M^-2.5). Calculate approximately how long this 15 solar mass star would remain in the main sequence phase, compared to the 1 solar mass star.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning