Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 16RQ
To determine
Describe a giant star observe in a close binary system with less mass than its main-sequence companion.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W).
(Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)
Do this in 10 min. I will give like on answer
QUESTION 16
Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in
decreases in
until it makes a turn towards the main sequence, as it follows its evolutionary track.
Protostars of different masses follow diferent
paths on their way to the main sequence.
107
Luminosity (L)
10
105
10
107
10²
101
1
10-1
10-2
10-3
Spectral
type
0.01 R
0.001
Re
60 M
MAIN SEQUENCE
40,000 30,000
20 Mau
10 Mgun
5 Mun
0.1 Run
Ren
radius; temperature
luminosity; radius
3 Min.
05 BO
temperature; luminosity
Oluminosity: temperature
radius: luminosity
1 M
10,000 6000
Surlace temperature (K)
1,000 Rs
2 M STAR
L
0.8 M
B5 AO FOGO КБ МБ
-10
+10
3000
Absolute visual magnitude
and
Chapter 13 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQ
Ch. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 18RQCh. 13 - Prob. 19RQCh. 13 - Prob. 20RQCh. 13 - Prob. 21RQCh. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 24RQCh. 13 - Prob. 25RQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Add a fourth column to Table 13-1 and write in the...Ch. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 2SOPCh. 13 - Prob. 1LTLCh. 13 - Prob. 2LTLCh. 13 - Prob. 3LTLCh. 13 - Prob. 4LTLCh. 13 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a 3 and 8 MSunstar formed together in a binary system, which star would: A. Evolve off the main sequence first? B. Form a carbon- and oxygen-rich white dwarf? C. Be the location for a nova explosion?arrow_forwardAccording to the text, a star must be hotter than about 25,000 K to produce an H II region. Both the hottest white dwarfs and main-sequence O stars have temperatures hotter than 25,000 K. Which type of star can ionize more hydrogen? Why?arrow_forwardIn the HR diagrams for some young clusters, stars of both very low and very high luminosity are off to the right of the main sequence, whereas those of intermediate luminosity are on the main sequence. Can you offer an explanation for that? Sketch an HR diagram for such a cluster.arrow_forward
- You can use the equation in Exercise 22.34 to estimate the approximate ages of the clusters in Figure 22.10, Figure 22.12, and Figure 22.13. Use the information in the figures to determine the luminosity of the most massive star still on the main sequence. Now use the data in Table 18.3 to estimate the mass of this star. Then calculate the age of the cluster. This method is similar to the procedure used by astronomers to obtain the ages of clusters, except that they use actual data and model calculations rather than simply making estimates from a drawing. How do your ages compare with the ages in the text? Figure 22.10 NGC 2264 HR Diagram. Compare this HR diagram to that in Figure 22.8; although the points scatter a bit more here, the theoretical and observational diagrams are remarkably, and satisfyingly, similar. Figure 22.12 Cluster M41. (a) Cluster M41 is older than NGC 2264 (see Figure 22.10) and contains several red giants. Some of its more massive stars are no longer close to the zero-age main sequence (red line). (b) This ground-based photograph shows the open cluster M41. Note that it contains several orange-color stars. These are stars that have exhausted hydrogen in their centers, and have swelled up to become red giants. (credit b: modification of work by NOAO/AURA/NSF) Figure 22.13 HR Diagram for an Older Cluster. We see the HR diagram for a hypothetical older cluster at an age of 4.24 billion years. Note that most of the stars on the upper part of the main sequence have turned off toward the red-giant region. And the most massive stars in the cluster have already died and are no longer on the diagram. Characteristics of Main-Sequence Starsarrow_forwardWhich of the following can you determine about a star without knowing its distance, and which can you not determine: radial velocity, temperature, apparent brightness, or luminosity? Explain.arrow_forwardA star begins its life with a mass of 5 MSunbut ends its life as a white dwarf with a mass of 0.8 MSun. List the stages in the star’s life during which it most likely lost some of the mass it started with. How did mass loss occur in each stage?arrow_forward
- Describe the evolution of a star with a mass similar to that of the Sun, from the protostar stage to the time it first becomes a red giant. Give the description in words and then sketch the evolution on an HR diagram.arrow_forwardExplain how an HR diagram of the stars in a cluster can be used to determine the age of the cluster.arrow_forwardBetelgeuse is a red giant at a distance of 428 light years. In the future it will become a supernova similar to Tycho's supernova which was observed in 1572 and lies at a distance of 9800 light years. At its peak, its brightness was similar to that of Venus (which has a peak apparent magnitude of -4). What might we expect the peak apparent magnitude of the Betelgeuse supernova explosion to be?arrow_forward
- Explain how some stars form in binary systems. ...arrow_forward(Astronomy) Hyades Cluster Age. This chapter states that the Hyades cluster is 650 million years old. What is the age of the cluster based on highest-mass star in the cluster that is still on the main sequence? (Hint: the figure and the table below may be helpful.)arrow_forwardConsider two stars on the main sequence, A and B. Star A has a mass of Мо Star B has a mass of 0.2 Мо By what factor is the luminosity of star A greater than the luminosity of star В? [Hint: use the proportionality relations for mass, luminosity, or lifetime for stars on the main sequence.]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax