Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 11P
To determine
The average velocity of expansion of the Cygnus loop in units of km/s.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the small angle equation to find the angular diameter of Sgr A* if it has a diameter of 13 AU and a distance of
8.5 kpc.
A star is transited by a planet. From the measured period T and the transit duration t alone, show that one can obtain an upper bound on the density of the transited star : rhomax= 3T/(G(pi2)(t3)). Hint: Combine Kepler's Law [(omega2)(a3)=GMstar and the equation t=((rstarT)/(pi*a))*(1-b2)1/2 to eliminate a, and then extract the density of the spherical star. The upper bound is obtained by assuming an impact parameter b=0.
White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a
4
sphere is Tr.)
3
km
Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size?
I Table A-10 I Properties of the Planets
ORBITAL PROPERTIES
Semimajor Axis (a)
Orbital Period (P)
Average Orbital
Velocity (km/s)
Orbital
Inclination
Planet
(AU)
(106 km)
(v)
(days)
Eccentricity
to Ecliptic
Mercury
0.387
57.9
0.241
88.0
47.9
0.206
7.0°
Venus
0.723
108
0.615
224.7
35.0
0.007
3.4°
Earth
1.00
150
1.00
365.3
29.8
0.017
Mars
1.52
228
1.88
687.0
24.1
0.093
1.8°
Jupiter
5.20
779
11.9
4332
13.1
0.049
1.30
Saturn
9.58
1433
29.5
10,759
9.7
0.056
2.5°
30,799
60,190
Uranus
19.23
2877
84.3
6.8
0.044
0.8°
Neptune
* By definition.
30.10
4503
164.8
5.4
0.011
1.8°
PHYSICAL PROPERTIES (Earth = e)…
Chapter 13 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQ
Ch. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 18RQCh. 13 - Prob. 19RQCh. 13 - Prob. 20RQCh. 13 - Prob. 21RQCh. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 24RQCh. 13 - Prob. 25RQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Add a fourth column to Table 13-1 and write in the...Ch. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 2SOPCh. 13 - Prob. 1LTLCh. 13 - Prob. 2LTLCh. 13 - Prob. 3LTLCh. 13 - Prob. 4LTLCh. 13 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the red glow around Antares is indeed produced by reflection of the light from Antares by dust, what does its red appearance tell you about the likely temperature of Antares? Look up the spectral type of Antares in Appendix J. Was your estimate of the temperature about right? In most of the images in this chapter, a red glow is associated with ionized hydrogen. Would you expect to find an H II region around Antares? Explain your answer.arrow_forwardCalculate the angular diameter of a prestellar nebula of radius 125 AU lying 150 pc from Earth. angular diameter = 15. ΑΣΦ B ? arc secondsarrow_forwardAssuming that at the end of the He burning phase of the stellar core (r < R_core) has no H or He or other metals and is composed completely of Carbon, X=Y=0, X_c = 1 ; The envelope above the core has a normal stellar composition ( r > R_core). Calculate the length of time in years that a 1M_sol and 10M_sol star will live on the horizontal branch or the time between the start and end of the He burning phase. Assume that the normal relationship between mass and luminosity holds for horizontal branch stars. Please be as detailed as possiblearrow_forward
- What is the wavelength shift (delta) (h) of a exoplanetery system at a wavelength of X angstroms if an exoplan et creates a doppler shift in its star of 2.4 km per second? Use the doppler equation (delta)/(h) = v/carrow_forwardIf a protostellar disk is 200 AU in radius and the disk plus the forming star together contain 2 solar masses, what is the orbital speed at the outer edge of the disk in kilometers per second? (Hint: Use the formula for circular velocity, Eq. 5-1a. Remember that the formula requires units of kg, m, and s.) (Notes: 1 AU = 1.5 1011 m; the mass of the Sun can be found in the Chapter 8 Celestial Profile: The Sun.)arrow_forwardDid hydrogen gas condense from the nebula as the nebula cooled? What about helium gas? How do you know?arrow_forward
- If the Orion Nebula is 8 pc in diameter and has a density of about 6.0 108 hydrogen atoms/m3, what is its total mass? (Notes: The volume of a sphere is 43r3; 1 pc = 3.1 1016 m; the mass of a hydrogen atom is 1.7 1027 kg.)arrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forwardA planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs? First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs So we first need to convert the rate into pc/s and the time into seconds: vpc/s = vkm/s (1 pc / 3.09 x 1013km) vpc/s = ? Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr) Ts = ? s Δd= vpc/sTs Therefore, Δd = ? pcarrow_forward
- 2arrow_forwardUse this light curve of a star with a transiting exoplanet to answer the following. If the exoplanet is orbiting a star identical to our own Sun, what is its average orbital distance, in AU? What is the period in years of the transiting exoplanet? Use this light curve of a star with a transiting exoplanet to answer the following questions. Brightness 0 V V V B 5 10 15 20 Time (months) 25 30 35arrow_forwardIf the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning