Biochemistry
6th Edition
ISBN: 9781305577206
Author: Reginald H. Garrett, Charles M. Grisham
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 18P
Interpretation Introduction
To propose:
The active model for glutamate-oxaloacetate aminotransferase (pdb id= GOT1) and identifying the amino acid side chains involved in binding pyridoxal-5’-phosphate.
Introduction:
The displacement bisubstrate transfers an amino group to transform a keto acid into amino acid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Biochemistry
Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...
Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Answers to all problems are at the end of this...Ch. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Prob. 18PCh. 13 - Answers to all problems are at the end of this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. (Research Problem) The Nature and Roles of Linear Motifs in Proteins In addition to domains and modules, there are other significant sequence patterns in proteins—known as linear motifs—that are associated with a particular function. Consult the biochemical literature to answer the following questions: 1. What are linear motifs? 2. How are they different from domains?. 3. What are their functions? 4. How can they be characterized? 5. There are several papers that are good starting points for this problem. Neduva, V., and Russell, R., 2005. Linear motifs: evolutionary interaction switches. FEBS Letters 579:3342-3345. Gibson, T., 2009. Cell regulation: determined to signal discrete cooperation. Trends in Biochemical Sciences 34:471-482. Diella, K. Haslam, N., Chica., C. et aL, 2009. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Frontiers of Bioscience 13:6580-6603.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. General Controls Over Enzyme Activity List six general ways in which enzyme activity is controlled.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - I Measurement of the rate constants for a simple enzymatic reaction obeying Michaelis-Menten kinetics gave the following results: k1=2108M1sec1k1=1103sec1k2=5103sec1a. What is Ks, the dissociation constant for the enzyme-substrate complex? b. What is Km, the Michaelis constant for this enzyme? c. What is kcat (the turnover number) for this enzyme? d. What is the catalytic efficiency (kcat/Km) for this enzyme? e. Does this enzyme approach kinetic perfection? (That is, does kcat/Km approach the diffusion-controlled rate of enzyme association with substrate?) f. If a kinetic measurement was made using 2 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? g. Again, using 2 nanomoles of enzyme per mL of reaction mixture, what concentration of substrate would give v = 0.75 Vmax? h. If a kinetic measurement was made using 4 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? What would Km equal under these conditions?arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Describe the secondary structure of each subdomain of malonyl-CoA: ACP transferase Explain the difference between parallel and antiparallel beta sheets.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Determining the Branch Points and Reducing Ends of Amylopectin A 0.2-g sample of amylopectin was analyzed to determine the fraction of the total glucose residues, that are branch points in the structure. The sample was exhaustively methylated and then digested, yielding 50-mol of 2,3-dimethylgluetose and 0.4 mol of 1,2,3,6- letramethylglucose. What fraction of the total residues are branch points? I low many reducing ends does this sample of amylopectin have?arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphical Analysis of MWC Allosteric Enzyme Kinetics (Integrates with Chapter 1.1) Draw both Line weaver-Burk plots and Hanes-Woolf plots for an MWC allosteric enzyme system, showing separate curves for the kinetic response in (a) the absence of any effectors, (b) the presence of allosteric activator Λ, and (c) the presence of allosteric inhibitor I.arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Examine the ActiveModle for N-myristoylt ranjsferase and explain the mechanism of N-myristolation.arrow_forwardAnswers to all problems are at the end οΓthis book. Detailed solutions are available in the Student Solutions Manual. Study Guide, and Problems Book. Using Site-Direcled Muta.nts to Understand an Enzyme Mechanism In this chapter, the exponent in which Craik and Rutter replaced Asp102 with Asn in trypsin (reducing activity 10,000 -fold) was discussed. On the basis of your knowledge of the catalytic triad structure in trypsin, suggest a structure for the “uncatalytic triad of Asn-His-Ser in this mutant enzyme. Explain why the structure you have proposed explains the reduced activity of the mutant trypsin. See the original journal articles (Sprang, et al., 1987. Science 237:905-913) to Craik, et al., 1987. Scieence 237:909-913) to see Craik and Rutter's answer to this question.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Describe the Effects on cAMP and Glycogen Levels in Cells Exposed to Cholera Toxin Cholera toxin is an enzyme that covalently modifies the G-subunit of G proteins. (Cholera toxin catalyzes the transfer of ADP-ribose from NAD+ to an arginine residue in Gan ADP-ribosylation reaction.) Covalent modification of G� inactivates its GTPase activity. Predict the consequences of cholera to.vin on cellular cAMP and glycogen levels.arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Interpreting Kinetics Experiments from Graphical Patterns The following graphical patterns obtained from kinetic experiments have several possible interpretations depending on the nature of the experiment and the variables being plotted. Give at least two possibilities for each.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphical Analysis of Negative Gooperativity in KNF Allosteric Enzyme Kinetics The KNF model for allosteric transitions includes the possibility of negative cooperativity Draw Lineweaver-Burk and Hanes-Woolf plots for the case of negative cooperatively m substrate binding. (As a point of reference, include a line showing the classic Michaelis-Menten response of v to [S].)arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. The Role of Proline Residues in -Turns Pro is the amino acid least commonly found in «-helices but most commonly found in -turns. Discuss the reasons for this behavior.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license