ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
3rd Edition
ISBN: 9781264452545
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 13.93P
Interpretation Introduction
(a)
Interpretation:
The two constitutional isomers formed when linoleic acid is partially hydrogenated with one equivalent of H2 need to be identified.
Concept Introduction:
- Fatty acids are carboxylic acids consisting of a long hydrocarbon chain with a terminal
carboxylic acid group. - The hydrocarbon chain can be saturated (saturated fatty acids) or unsaturated (unsaturated fatty acids)
- Hydrogenation refers to the process in which hydrogen is added across a carbon-carbon double bond associated with unsaturated fatty acids.
Interpretation Introduction
(b)
Interpretation:
The product when linoleic acid is completely hydrogenated by H2 needs to be identified.
Concept Introduction:
- Fatty acids are carboxylic acids consisting of a long hydrocarbon chain with a terminal carboxylic acid group.
- The hydrocarbon chain can be saturated (saturated fatty acids) or unsaturated (unsaturated fatty acids)
- Hydrogenation refers to the process in which hydrogen is added across a carbon-carbon double bond associated with unsaturated fatty acids.
Interpretation Introduction
(c)
Interpretation:
The product formed during the hydrogenation of linoleic acid when one of the cis double bonds is converted to a trans double bond needs to be identified.
Concept Introduction:
- Fatty acids are carboxylic acids consisting of a long hydrocarbon chain with a terminal carboxylic acid group.
- The hydrocarbon chain can be saturated (saturated fatty acids) or unsaturated (unsaturated fatty acids)
- Hydrogenation refers to the process in which hydrogen is added across a carbon-carbon double bond associated with unsaturated fatty acids.
- Cis-trans isomers are geometric isomers. Cis isomers are isomers where
functional groups appear on the same side of a double bond; in trans isomers, they appear on opposite sides of a double bond.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Calculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons
Please sirrr soollveee these parts pleaseeee and thank youuuuu
Please sirrr soollveee these parts pleaseeee and thank youuuuu, don't solve it by AI plleeaasseee
Chapter 13 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
Ch. 13.1 - Convert each condensed structure to a complete...Ch. 13.1 - Prob. 13.2PCh. 13.1 - Complete the structure of zingiberene, a component...Ch. 13.2 - Prob. 13.4PCh. 13.2 - Prob. 13.5PCh. 13.2 - Prob. 13.6PCh. 13.3 - Prob. 13.7PCh. 13.3 - Prob. 13.8PCh. 13.3 - Prob. 13.9PCh. 13.3 - Prob. 13.10P
Ch. 13.3 - Prob. 13.11PCh. 13.3 - Prob. 13.12PCh. 13.3 - Prob. 13.13PCh. 13.4 - Prob. 13.14PCh. 13.6 - Prob. 13.15PCh. 13.6 - Prob. 13.16PCh. 13.6 - Prob. 13.17PCh. 13.6 - Prob. 13.18PCh. 13.6 - Prob. 13.19PCh. 13.7 - Prob. 13.20PCh. 13.8 - Prob. 13.21PCh. 13.8 - Prob. 13.22PCh. 13.10 - Give the IUPAC name of each compound.
Ch. 13.10 - Prob. 13.24PCh. 13.11 - Prob. 13.25PCh. 13.12 - Prob. 13.26PCh. 13.13 - Prob. 13.27PCh. 13.13 - Prob. 13.28PCh. 13 - Anethole, the major constituent of anise oil, is...Ch. 13 - Prob. 13.30PCh. 13 - What is the molecular formula for a hydrocarbon...Ch. 13 - Prob. 13.32PCh. 13 - Prob. 13.33PCh. 13 - Prob. 13.34PCh. 13 - Prob. 13.35PCh. 13 - Prob. 13.36PCh. 13 - Give the IUPAC name for each molecule depicted in...Ch. 13 - Give the IUPAC name for each molecule depicted in...Ch. 13 - Give the IUPAC name for each compound. a....Ch. 13 - Give the IUPAC name for each compound. d....Ch. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Give the structure corresponding to each IUPAC...Ch. 13 - Prob. 13.44PCh. 13 - Each of the following IUPAC names is incorrect....Ch. 13 - Each of the following IUPAC names is incorrect....Ch. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Label the carbon-carbon double bond as cis or...Ch. 13 - Prob. 13.51PCh. 13 - Prob. 13.52PCh. 13 - Prob. 13.53PCh. 13 - Prob. 13.54PCh. 13 - Prob. 13.55PCh. 13 - Prob. 13.56PCh. 13 - Prob. 13.57PCh. 13 - Prob. 13.58PCh. 13 - Prob. 13.59PCh. 13 - Prob. 13.60PCh. 13 - What alkyd halide is formed when each alkene is...Ch. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - What alkene is needed as a starting material to...Ch. 13 - Prob. 13.66PCh. 13 - Prob. 13.67PCh. 13 - Prob. 13.68PCh. 13 - Prob. 13.69PCh. 13 - Prob. 13.70PCh. 13 - Prob. 13.71PCh. 13 - Prob. 13.72PCh. 13 - Prob. 13.73PCh. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76PCh. 13 - Prob. 13.77PCh. 13 - Prob. 13.78PCh. 13 - Prob. 13.79PCh. 13 - Prob. 13.80PCh. 13 - Prob. 13.81PCh. 13 - Are o-bromochlorobenzene and m-bromochlorobenzene...Ch. 13 - Give the structure corresponding to each IUPAC...Ch. 13 - Give the structure corresponding to each IUPAC...Ch. 13 - Prob. 13.85PCh. 13 - Prob. 13.86PCh. 13 - Prob. 13.87PCh. 13 - Prob. 13.88PCh. 13 - Prob. 13.89PCh. 13 - Prob. 13.90PCh. 13 - Prob. 13.91PCh. 13 - Prob. 13.92PCh. 13 - Prob. 13.93PCh. 13 - Eleostearic acid is an unsaturated fatty acid...Ch. 13 - Prob. 13.95PCh. 13 - Prob. 13.96PCh. 13 - Prob. 13.97PCh. 13 - Prob. 13.98PCh. 13 - Prob. 13.99PCh. 13 - Prob. 13.100PCh. 13 - Prob. 13.101PCh. 13 - Prob. 13.102PCh. 13 - Answer the following questions about compound A,...Ch. 13 - Prob. 13.104PCh. 13 - Prob. 13.105PCh. 13 - Prob. 13.106PCh. 13 - Prob. 13.107CPCh. 13 - Prob. 13.108CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- III O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forward
- What is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forwardSelect the major product of the following reaction. Br Br₂, light D Br Br Br Brarrow_forward
- Select all molecules which are chiral. Brarrow_forwardUse the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning