OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 137QRT

(a)

Interpretation Introduction

Interpretation:

The concentration of SnF2 in ppm and ppb has to be calculated.

(a)

Expert Solution
Check Mark

Answer to Problem 137QRT

The concentration of SnF2 in ppm and ppb are 6300 ppm and 6,300,000 ppb, respectively.

Explanation of Solution

Given information is given as, 0.63%ofSnF2 is present.

As known, 1%=10,000 ppm.

So, 0.63%ofSnF2 becomes,

    0.63%SnF2×10,000ppm1%=6300 ppmSnF2.

Conversion of ppm to ppb as follows,

  6300 ppmSnF2×1000ppbSnF21ppmSnF2=6,300,000 ppbSnF2.

Hence, the concentration of SnF2 in ppm and ppb are 6300 ppm and 6,300,000 ppb, respectively.

(b)

Interpretation Introduction

Interpretation:

The molarity of SnF2 in solution has to be calculated.

(b)

Expert Solution
Check Mark

Answer to Problem 137QRT

The molarity of SnF2 in solution is 0.040M.

Explanation of Solution

A sample of exactly 100g of solution contains 0.63gSnF2 and 99.37g water. So,

  0.63gSnF2102gsolution×0.998gsolution1mL×1molSnF2 156.707gSnF2×1000mL1L=0.040MSnF2.

Hence, molarity of SnF2 in solution is 0.040M.

(c)

Interpretation Introduction

Interpretation:

From one metric ton of cassiterite, number of 250mL bottles of 0.63%SnF2 solution that can be prepared has to be calculated.

(c)

Expert Solution
Check Mark

Answer to Problem 137QRT

The number of bottles calculated as 4.99×105.

Explanation of Solution

The given reaction;

  SnO2(s)+2C(s)Sn(s)+2CO(g).

In exactly one metric ton, 106g is present; then theoretical value of Tin is,

  106gSnO2×1molofSnO2 150.709gSnO2×1molSn 1molSnO2×118.710gSn1molSn=7.88×105gSn.

So, the actual mass of Tin is,

  7.88×105gSntheoretical×80gSnactual100gSntheoretical=6.30×105gSn.

The theoretical mass of SnF2 is,

  6.30×106gSn×1molofSn 118.710gSn×1molSnF2 1molSn×156.707 gSnF21molSnF2=8.32×105gSnF2.

The actual mass of SnF2 is,

  8.32×105gSnF2theoretical×94 g SnF2actual100gSnF2theoretical=7.82×105gSnF2.

Number of bottles is calculated by using bottle volume; which is calculated by molarity obtained

  7.82×105g SnF2×1molSnF2 156.707gSnF2×1L0.040mol SnF2×1000mL1L×1Bottle250mL=4.99×105bottles.

Hence, number of bottles calculated as is 4.99×105.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.
NGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2
Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!!    I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!

Chapter 13 Solutions

OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:

Ch. 13.6 - Prob. 13.4PSPCh. 13.6 - Prob. 13.8ECh. 13.6 - Drinking water may contain small quantities of...Ch. 13.6 - Prob. 13.9CECh. 13.6 - A 500-mL bottle of Evian bottled water contains 12...Ch. 13.6 - The mass fraction of gold in seawater is 1 103...Ch. 13.6 - Prob. 13.6PSPCh. 13.6 - Prob. 13.7PSPCh. 13.6 - Prob. 13.8PSPCh. 13.6 - Prob. 13.9PSPCh. 13.6 - Prob. 13.12ECh. 13.6 - Prob. 13.13CECh. 13.7 - The vapor pressure of an aqueous solution of urea....Ch. 13.7 - Prob. 13.14ECh. 13.7 - Prob. 13.15ECh. 13.7 - Prob. 13.11PSPCh. 13.7 - Suppose that you are closing a cabin in the north...Ch. 13.7 - A student determines the freezing point to be 5.15...Ch. 13.7 - Prob. 13.17CECh. 13.7 - Prob. 13.13PSPCh. 13.9 - Prob. 13.18CECh. 13.10 - Prob. 13.19ECh. 13.10 - Prob. 13.20ECh. 13 - Prob. 1QRTCh. 13 - Prob. 2QRTCh. 13 - Prob. 3QRTCh. 13 - Prob. 4QRTCh. 13 - Prob. 5QRTCh. 13 - Prob. 6QRTCh. 13 - Prob. 7QRTCh. 13 - Prob. 8QRTCh. 13 - Prob. 9QRTCh. 13 - Prob. 10QRTCh. 13 - Prob. 11QRTCh. 13 - Prob. 12QRTCh. 13 - Prob. 13QRTCh. 13 - Prob. 14QRTCh. 13 - Beakers (a), (b), and (c) are representations of...Ch. 13 - Prob. 16QRTCh. 13 - Simple acids such as formic acid, HCOOH, and...Ch. 13 - Prob. 18QRTCh. 13 - Prob. 19QRTCh. 13 - Prob. 20QRTCh. 13 - Prob. 21QRTCh. 13 - Prob. 22QRTCh. 13 - Prob. 23QRTCh. 13 - Prob. 24QRTCh. 13 - Prob. 25QRTCh. 13 - Prob. 26QRTCh. 13 - Refer to Figure 13.10 ( Sec. 13-4b) to answer...Ch. 13 - Prob. 28QRTCh. 13 - Prob. 29QRTCh. 13 - Prob. 30QRTCh. 13 - The Henrys law constant for nitrogen in blood...Ch. 13 - Prob. 32QRTCh. 13 - Prob. 33QRTCh. 13 - Prob. 34QRTCh. 13 - Prob. 35QRTCh. 13 - Prob. 36QRTCh. 13 - Prob. 37QRTCh. 13 - Prob. 38QRTCh. 13 - Prob. 39QRTCh. 13 - Prob. 40QRTCh. 13 - A sample of water contains 0.010 ppm lead ions,...Ch. 13 - Prob. 42QRTCh. 13 - Prob. 43QRTCh. 13 - Prob. 44QRTCh. 13 - Prob. 45QRTCh. 13 - Prob. 46QRTCh. 13 - Prob. 47QRTCh. 13 - Prob. 48QRTCh. 13 - Prob. 49QRTCh. 13 - Prob. 50QRTCh. 13 - Consider a 13.0% solution of sulfuric acid,...Ch. 13 - You want to prepare a 1.0 mol/kg solution of...Ch. 13 - Prob. 53QRTCh. 13 - Prob. 54QRTCh. 13 - Prob. 55QRTCh. 13 - A 12-oz (355-mL) Pepsi contains 38.9 mg...Ch. 13 - Prob. 57QRTCh. 13 - Prob. 58QRTCh. 13 - Prob. 59QRTCh. 13 - Prob. 60QRTCh. 13 - Prob. 61QRTCh. 13 - Prob. 62QRTCh. 13 - Prob. 63QRTCh. 13 - Prob. 64QRTCh. 13 - Prob. 65QRTCh. 13 - Prob. 66QRTCh. 13 - Calculate the boiling point and the freezing point...Ch. 13 - Prob. 68QRTCh. 13 - Prob. 69QRTCh. 13 - Prob. 70QRTCh. 13 - Prob. 71QRTCh. 13 - Prob. 72QRTCh. 13 - The freezing point of p-dichlorobenzene is 53.1 C,...Ch. 13 - Prob. 74QRTCh. 13 - Prob. 75QRTCh. 13 - A 1.00 mol/kg aqueous sulfuric acid solution,...Ch. 13 - Prob. 77QRTCh. 13 - Prob. 78QRTCh. 13 - Prob. 79QRTCh. 13 - Prob. 80QRTCh. 13 - Prob. 81QRTCh. 13 - Differentiate between the dispersed phase and the...Ch. 13 - Prob. 83QRTCh. 13 - Prob. 84QRTCh. 13 - Prob. 85QRTCh. 13 - Prob. 86QRTCh. 13 - Prob. 87QRTCh. 13 - Prob. 88QRTCh. 13 - Prob. 89QRTCh. 13 - Prob. 90QRTCh. 13 - Prob. 91QRTCh. 13 - Prob. 92QRTCh. 13 - Prob. 93QRTCh. 13 - Prob. 94QRTCh. 13 - Prob. 95QRTCh. 13 - Prob. 96QRTCh. 13 - Prob. 97QRTCh. 13 - Prob. 98QRTCh. 13 - Prob. 99QRTCh. 13 - Prob. 100QRTCh. 13 - Prob. 101QRTCh. 13 - Prob. 102QRTCh. 13 - In The Rime of the Ancient Mariner the poet Samuel...Ch. 13 - Prob. 104QRTCh. 13 - Prob. 105QRTCh. 13 - Calculate the molality of a solution made by...Ch. 13 - Prob. 107QRTCh. 13 - Prob. 108QRTCh. 13 - Prob. 109QRTCh. 13 - Prob. 110QRTCh. 13 - The organic salt [(C4H9)4N][ClO4] consists of the...Ch. 13 - A solution, prepared by dissolving 9.41 g NaHSO3...Ch. 13 - A 0.250-M sodium sulfate solution is added to a...Ch. 13 - Prob. 114QRTCh. 13 - Prob. 115QRTCh. 13 - Prob. 116QRTCh. 13 - Prob. 117QRTCh. 13 - Prob. 118QRTCh. 13 - Prob. 119QRTCh. 13 - Refer to Figure 13.10 ( Sec. 13-4b) to determine...Ch. 13 - Prob. 121QRTCh. 13 - Prob. 122QRTCh. 13 - Prob. 123QRTCh. 13 - Prob. 124QRTCh. 13 - In your own words, explain why (a) seawater has a...Ch. 13 - Prob. 126QRTCh. 13 - Prob. 127QRTCh. 13 - Prob. 128QRTCh. 13 - Prob. 129QRTCh. 13 - Prob. 130QRTCh. 13 - Prob. 131QRTCh. 13 - A 0.109 mol/kg aqueous solution of formic...Ch. 13 - Prob. 133QRTCh. 13 - Maple syrup sap is 3% sugar (sucrose) and 97%...Ch. 13 - Prob. 137QRTCh. 13 - Prob. 13.ACPCh. 13 - Prob. 13.BCPCh. 13 - Prob. 13.CCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY