(a)
Interpretation:
The empirical formula for the compound needs to be determined when the mass of the compound is 0.270 g and it is dissolved in 50.0 g of camphor. The freezing point of the resultant solution is 177.9 °C. The freezing point camphor is 179.8°C and
Concept introduction:
Colligative properties are the properties that depend on the number of particles present in the solution. Elevation in boiling point, depression in freezing point, lowering in vapor pressure and osmotic pressure are some common examples of colligative properties. Vapor pressure is the pressure at which is exerted by vapor on the liquid surface in a closed system when the system is in
(b)
Interpretation:
The molar mass of the compound needs to be determined.
Concept introduction:
Colligative properties are the properties which depend on the number of particles present in the solution. Elevation in boiling point, depression in freezing point, lowering in vapor pressure and osmotic pressure are some common examples of colligative properties. Vapor pressure is the pressure at which is exerted by vapor on the liquid surface in a closed system when the system is in thermodynamic equilibrium.
(c)
Interpretation:
The molecular formula for the compound needs to be determined.
Concept introduction:
From the mass of the empirical formula and molar mass, the molecular formula can be calculated as follows:
Here, n is the common factor.
Also,
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
- Please correct answer and don't used hand raitingarrow_forwardFor each molecule below, predict whether the molecule would be expected to show aromatic character or not. Explain your answer in each case. These molecule are planner. [THREE] a. b. HIN: (14) annulene C. OH d. :0: :0: +arrow_forwardDrawing Instructions: Draw structures corresponding to each of the given names. a. Draw: 2-ethyl-1,3-butadiene b. Name:arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardс. d. СнЗ Сизена=-4=4 Cla H Eget3 над f. e. H-C=C-CH3 + 285 → H-C=C-CH3+2не H-C=C-CH3 + Nanta» g+ CH₂ CH₂-G = G-C₁₂-G=CH₂ + 2HI→ H H H ALarrow_forwardThe IR (infrared) spectra of two pure compounds (0.010 M compound A in solvent and 0.010 M compound B in solvent) are given. The pathlength of the cell is 1.00 cm. The y-axis in the spectra is transmittance rather than absorption, so that the wavenumbers at which there is a dip in the curve correspond to absorption peaks. A mixture of A and B in unknown concentrations gave a percent transmittance of 49.8% at 2976 cm¹ and 44.9% at 3030 cm-1 Wavenumber 0.010 M A 0.010 M B Unknown 3030 cm-1 35.0% 93.0% 44.9% 2976 cm-¹ 76.0% 42.0% 49.8% What are the concentrations of A and B in the unknown sample? Transmittance (%) 100 90 80 70 60 50 40 2976 cm-1 30 3030 cm-1 20 Pure A 10 Pure B 0 3040 2990 Wavenumber (cm-1) 2940 2890arrow_forward
- synthesize 1-propyne starting with propane.arrow_forwardstarting reactant IV target + enantiomer 1) BH3, THF 2) H₂O2, NaOH, H₂O 1) Hg(OAc)2, THF, H₂O (or ROH) 2) NaBH4 D2, Pt/C H₂, Pt/C D2, Lindlar catalyst or Ni₂B H₂, Lindlar catalyst or Ni₂B NaNH, OH/H₂O or SH/H₂S H₂O/H₂O 1) 03 2) H₂O 1) 03 2) (CH3)2S HBr, w/ROOR HBr, (cold, dark, no ROOR) Naº, NH3(e) NBS (trace Br2), light HgSO4, H2SO4, H₂O Naº, ROH 1) Sia₂BH, THF 2) H2O2, NaOH, H₂O H3O/ROH or H₂O*/RSH OR/ROH or SR/RSH 1) OsO4, NMO 2) NaHSO3, H₂O 1) MCPBA (peroxy acid) 2) H3O, H2O (or ROH or RSH) KMnO4 (warm, concentrated) Br₂/H₂O Br₂, heat or light Br2, cold, dark, no peroxides (CH3)3CO(CH3)3COH ROH or RSH H₂O KMnO4/OH (cold, dilute)arrow_forwardNonearrow_forward
- Indicate whether the ability of atoms to associate with each other depends on electron affinity.arrow_forward1) Write the reduction half reactions and find the reduction potential for each pair.a. Zn/Zn2+b. Cu/Cu2+c. Al/Al3+d. Ag/Ag1+ 2) For each of the following voltaic cells, identify the anode, cathode, write the standard cell notation/diagram, and predict the cell potential.arrow_forwardThe following reaction is first order in NO2. Solve the differential rate equation to create the integrated rate law. NO2 (g) -> NO(g) + O (g)arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning