(a)
Interpretation:
The molality of a solution made by dissolving 0.655 mol of citric acid in 1.00 kg of water should be calculated.
Concept introduction:
The molarity of the solution is the ratio of the moles of solute and the weight of the solvent in kg. It is given by the formula,
(b)
Interpretation:
The molality of the solution made by dissolving 0.135 mg of KBr in 5.00 mL of water should be calculated.
Concept introduction:
The molarity of the solution is the ratio of the moles of solute and the weight of the solvent in kg. It is given by the formula,
(c)
Interpretation:
The molality of the solution made by dissolving 5.50 g of aspirin in 145 g of dichloromethane should be calculated.
Concept introduction:
The molarity of the solution is the ratio of the moles of solute and the weight of the solvent in kg. It is given by the formula,
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
- Water at 25 C has a density of 0.997 g/cm3. Calculate the molality and molarity of pure water at this temperature.arrow_forwardAn aqueous solution of a molecular compound freezes at 0.086C. What is the molality of the solution?arrow_forwardAssume that 30 L of maple sap yields one kilogram of maple syrup (66% sucrose, C12H22O11). What is the molality of the sucrose solution after one fourth of the water content of the sap has been removed?arrow_forward
- How can it be demonstrated that colloidal particles are electrically charged?arrow_forwardVinegar is a 5.0% solution of acetic acid (CH3CO2H) in water. The density of vinegar is 1.0055 g/mL. Express the concentration of acetic acid as (a) molality. (b) molarity. (c) mole fraction.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forward
- Solutions Introduced directly into the bloodstream have to be isotonic with blood; that is, they must have the same osmotic pressure as blood. An aqueous NaCl solution has to be 0.90% by mass to be isotonic with blood. What is the molarity of the sodium ions in solution? Take the density of the solution to be 1.00 g/mL.arrow_forwardA patient has a “cholesterol count” of 214. Like manyblood-chemistry measurements,this result is measured inunits of milligrams per deciliter (mgdL1). Determine the molar concentration of cholesterol inthis patient’s blood, taking the molar mass of cholesterolto be 386.64gmol1. Estimate the molality of cholesterol in the patient’sblood. If 214 is a typical cholesterol reading among men inthe United States, determine the volume of such bloodrequired to furnish 8.10 g of cholesterol.arrow_forwardA 12.0-g sample of a nonelectrolyte is dissolved in 80.0 g of water. The solution freezes at -1.94 C. Calculate the molar mass of the substance.arrow_forward
- When two beakers containing different concentrations of a solute in water are placed in a closed cabinet for a time, one beaker gains solvent and the other loses it, so that the concentrations of solute in the two beakers become equal. Explain what is happening.arrow_forwardWhat is the usual solubility behavior of an ionic compound in water when the temperature is raised? Give an example of an exception to this behavior.arrow_forwardCalculate the molality of a solution made by dissolving 115.0 g ethylene glycol, HOCH2CH2OH, in 500. mL water. The density of water at this temperature is 0.978 g/mL. Calculate the molarity of the solution.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning