
(a)
Interpretation:
For mixture of two volatile liquids,
Mole fraction of each component has to be calculated.
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(a)

Answer to Problem 13.149QP
Mole fraction of component A is
Mole fraction of component B is 0.48
Explanation of Solution
Given data
Molar mass of liquid A =
Molar mass of liquid B =
Vapour pressure of A =
Vapour pressure of B =
Calculation of mole fraction of each component
The mole fraction of the component is calculated by moles of the component is divided by the total number of moles in the mixture.
By plugging in the values of moles of each component and total moles of the component, the mole fraction of each component has calculated.
Mole fraction of component A has calculated as
Mole fraction of component B has calculated as 0.48
(b)
Interpretation:
For mixture of two volatile liquids,
Partial pressure of A and B over the solution at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(b)

Answer to Problem 13.149QP
Partial pressure of solution A is
Partial pressure of solution B is
Explanation of Solution
Given data
Molar mass of liquid A =
Molar mass of liquid B =
Vapour pressure of A =
Vapour pressure of B =
Calculation of partial pressure of each component
The formula for partial pressure,
According to Raoult’s law, the vapour pressure of the solution is sum of the individual partial pressure exerted by the solution and then using partial pressure equation, partial pressure of each component has calculated.
Partial pressure of solution A has calculated as
Partial pressure of solution B has calculated as
(c)
Interpretation:
For mixture of two volatile liquids,
Mole fraction of each component in the condensed liquid to be calculated.
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(c)

Answer to Problem 13.149QP
Mole fraction of component A in condensed liquid is
Mole fraction of component B in condensed liquid is
Explanation of Solution
Given data
Molar mass of liquid A =
Molar mass of liquid B =
Vapour pressure of A =
Vapour pressure of B =
The mole fraction is equal to partial pressure of the component divided by the total pressure.
By plugging in the value of partial pressure of each component and total pressure, the mole fraction of each component at condensed liquid has calculated.
Mole fraction of component A in condensed liquid has calculated as
Mole fraction of component B in condensed liquid has calculated as
(d)
Interpretation:
For mixture of two volatile liquids,
Partial pressure of the components above the condensed liquid at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
P- Partial pressure of each component
(d)

Explanation of Solution
Partial pressure of the component A above condensed liquid at
Partial pressure of the component B above condensed liquid at
Calculation of partial pressure of each component
The mole fraction of each component in condensed liquid was calculated I part (c) is,
Partial pressure of the component A above condensed liquid at
Partial pressure of the component B above condensed liquid at
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Atoms First
- An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.arrow_forwardThe reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?arrow_forwardOne liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forward
- How does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forwardDraw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forwardBenzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forward
- Draw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forwardpls helparrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





