
(a)
The power output of the turbine.
(a)

Answer to Problem 95RP
The power output of the turbine is
Explanation of Solution
Write the energy rate balance equation for one inlet and one outlet system.
Here, the rate of heat transfer is
The argon flows at steady state through the turbine. Hence, the rate of change in net energy of the system becomes zero.
Heat loss occurs to the surrounding at the exit. Neglect the potential energy changes. The work done is by the system (turbine) and the work done on the system is zero i.e.
The Equations (II) reduced as follows to obtain the work input.
Here, the
Write formula for enthalpy departure factor
Here, the enthalpy at ideal gas state is
Rearrange the Equation (III) to obtain
Refer Equation (IV) express as two states of enthalpy difference (initial and final).
The change in enthalpy at ideal state is expressed as follow.
Here, the specific heat is
Substitute
Refer Table A-1E, “Molar mass, gas constant, and critical-point properties”.
The critical temperature and pressure of argon gas is as follows.
The reduced pressure
The reduced pressure
At initial:
Refer Figure A-29, “Generalized enthalpy departure chart”.
The enthalpy departure factor
Refer Figure A-30, “Generalized entropy departure chart”.
The entropy departure factor
At final:
Refer Figure A-29E, “Generalized enthalpy departure chart”.
The enthalpy departure factor
Refer Figure A-30, “Generalized entropy departure chart”.
The entropy departure factor
Refer Table A-2E, “Ideal-gas specific heats of various common gases”.
The specific heat at constant pressure of argon is
The gas constant of argon is
Conclusion:
Substitute 0.04 for
Substitute
Thus, the power output of the turbine is
(b)
The exergy destruction associated with the process.
(b)

Answer to Problem 95RP
The exergy destruction associate with process is
Explanation of Solution
Write the entropy balance equation for closed system.
Here, the entropy input is
Rewrite the Equation (VII) as follows by substituting 0 for
Here, mass flow rate is
Write the formula for change in entropy
Here, the gas constant is R, the specific heat at constant pressure is
Write the formula for change in entropy
Here, the entropy departure factor is
Write the formula for exergy destruction associate with process.
Substitute
Conclusion:
Substitute
Substitute
Substitute
Thus, the exergy destruction associate with process is
Want to see more full solutions like this?
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
- This is a tilt and rotation question. Here are notes attached for reference.arrow_forwardThe crate of mass m is supported on a cart of negligible mass as shown in (Figure 1). Determine the maximum force P that can be applied a distance d from the cart bottom without causing the crate to tip on the cart. Express your answer in terms of some, all, or none of the variables b, d, h, m, and the acceleration due to gravity g. P B harrow_forwardConsider a pair of pipes running in parallel, through which 1200 GPM flows, which have thefollowing features:Pipe 1: Carbon Steel, Schedule 40, 8" Diameter, 1200 GPM, Water at 44°F, Fittings:2 tees, 2 butterfly valves, 2 pressure gauges with their respective ball valves, 1 valvemotorized balloon. All valves are completely open. Length of the pipe is 6 feet. Pipe 2: consists of a carbon steel bypass pipe, schedule 40, diameter of 4",with the following accessories: 2 elbows long radius of 90° and an open globe valve.The length of the pipe is 10 feet. a) Determine the flow rate in each pipe.b) The pressure drop.arrow_forward
- 1-ft3 of air is contained in a spring-loaded piston-cylinder device. The spring constant is 6 lbf/in, and thepiston diameter is 12 in. When no force is exerted by the spring on the piston, the state of the air is 250 psiaand 450◦F. This device is now cooled until the volume is one-third its original size. Determine the changein the specific internal energy and enthalpy of the air.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forward
- I need help with a MATLAB code. For question b.6 I have the MATLAB code shown below. How do I edit the code to answer question b.7. Please make sure the plots are reasonable. clc; clear all; % Constants mu = 398600; % Earth gravitational parameter, km^3/s^2 % Initial chief and deputy positions and velocities in ECI frame % Assume circular orbits in equatorial plane for simplicity a_c = 10000; % km a_d = 11500; % km r_c0 = [a_c; 0; 0]; v_c0 = [0; sqrt(mu/a_c); 0]; r_d0 = [a_d; 0; 0]; v_d0 = [0; sqrt(mu/a_d); 0]; % Initial relative state delta_r0 = r_d0 - r_c0; delta_v0 = v_d0 - v_c0; x0 = [delta_r0; delta_v0]; % 6x1 initial relative state % Time span tspan = [0 3600]; % 1 hour in seconds % Damping cases cases = struct( ... 'name', {'Critically damped', 'Under-damped', 'Over-damped'}, ... 'Kr', {eye(3)*2.5e-3, eye(3)*0.001, eye(3)*0.01}, ... 'P', {eye(3)*0.01, eye(3)*0.0006, eye(3)*0.02} ... ); % Simulate each case for i = 1:length(cases) Kr = cases(i).Kr; P =…arrow_forwardJust do Questions 7, 9, 11. Here are notes attached for reference.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forward
- Thermodynamics: Mass and Energy Analysis Of Control Volumes A spring-loaded piston-cylinder device contains 1.5 kg of carbon dioxide. This system is heated from 200kPa and 25◦C to 1200 kPa and 300◦C. Determine the total heat transfer to and work produced by this system.arrow_forwardCan you help with a code in MATLAB?arrow_forwardI need help writing a code in MATLAB. Please help me with question b.6arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





