Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 17P
Show how you would evaluate T, v, u, a, and g from the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In general, when a system undergoes a change from state 1 to state 2, the change in enthalpy is given by:
deltaH = deltaU + PdeltaV + VdeltaP + deltaPdeltaV
Derive this equation from the First Law of Thermodynamics, indicating the conditions assumed for the derivation.
p62,#13 with illustration and explanation
A 300-lb iron casting. initially at 600°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be
modeled as incompressible with specific heats 0.10 Btu/lb - °R. and 0.45 Btu/lb - °R, respectively.
(a) For the iron casting and oil as the system.determine the final equilibrium temperature, in °F.
Ignore heat transfer between the system and its surroundings.
°F
(b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R.
Ignore heat transfer between the system and its surroundings.
Btu/°R
Chapter 12 Solutions
Thermodynamics: An Engineering Approach
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- THERMODYNAMICS UPVOTE WILL BE GIVEN. PLEASE WRITE THE COMPLETE SOLUTIONS. NO LONG EXPLANATION NEEDED. BOX THE FINAL ANSWER AND USE 3 DECIMAL PLACES. DRAW PV and TS Diagrams. SEE THE ATTACHED PHOTO FOR THE CONSTANTS. The gain in entropy during an isothermal non-flow process of 5 lb of air at 60°F is 0.462 Btu/R. What is (a) the ratio V2/ V1 (b) the ratio P2/P1 . (c) work in KJ and (d) heat in KJ?arrow_forwardPLEASE HELP ANSWER THIS THERMODYNAMICS PRACTICE QUESTIONarrow_forwardOne-quarter Ibmol of oxygen gas (O₂) undergoes a process from p₁ = 20 lbf/in², T₁ = 500°R to p2 = 150 lbf/in². For the process W = -500 Btu and Q = -177.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forward
- find the changes in h as appropriate. The initial state pressure is p1 = 0.5 MPa. the final state is 2. a. constant volume : v1 = 0.3 m3/kg, p2 = 0.3 MPa; b. constant entropy : s1 = 6.3 kJ/kg K, p2 = 0.15 MPa; c. constant volume : h1 = 2500 kJ/kg, p2 = 0.2 MPa; d. constant enthalpy : s1 = 6.4 kJ/kg K, p2 = 0.2 MPa;arrow_forwardA gas undergoes isobaric expansion at 0.05 bar from 0.1 m³ to 1.0 m³ when 2.0 KiloJoules of heat is applied to it. Which of the following is true regarding the work, heat and the change in internal energy involed in this change (all quantities in KiloJoules)? A. +4.5, -2.0, +2.5 B. -4.5, +2.0, -2.5 C. +4.5, +2.0, +6.5 D. -4.5, -2.0, -6.5arrow_forwardA 300-lb iron casting, initially at 1050°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. Tf = i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. O = i Btu/°R Touthoolk ond Mediearrow_forward
- A gas initially at P1= 827, 400 Paa and v1=2.6 li undergoes a process and change state to a point where p2=275,800 Paa and v2=6.2li. If the internal energy decreases 123 KJ and Cp=295 J/kgm-K, determine (a) Cv, (b) delta H, and (c) R.arrow_forwardOne kg of an ideal gas (gas constant R = 287 J/kg.K) undergoes an irreversible process from state-1 (1 bar, 300 K) to state -2 (2 bar, 300 K). The change in specific entropy (52 - s1) of the gas (in J/kg. K) in the process isarrow_forward2) As shown, a piston-cylinder assembly contains 5 g of air holding the piston against the stops. The air, initially at 3 bar, 600 K, is slowly cooled until the piston just begins to move downward in the cylinder. The air behaves as an ideal gas, g = 9.81 m/s², and friction is negligible. Sketch the process of the air on a p-V diagram labeled with the temperature and pressure at the end states. Also determine the heat transfer, in kJ, between the air and its surroundings. Patm =1 bar Stops Piston m= 50 kg A = 9.75 × 10-3 m² 5 g of Air T = 600 K P = 3 bararrow_forward
- Water vapor undergoes the following processes: a. From a state at 200 kPa and 600 ° C it expands isothermally up to 100 kPa. B. Immediately isobarically compressed to 2 m3 / kg. C. From this last state it follows an isochoric process until reaching 600 ° C. Perform: a. Plotting the processes on the exact P-ν diagram. You must use the diagram P-νarrow_forwardOne-tenth kmol of carbon monoxide (CO) in a piston- cylinder assembly undergoes a process from p1 = 150 kPa, T1 = 300 K to p2 = 500 kPa, T2 = 370 K. For the process, W = -300 kJ. Employing the ideal gas model, determine: (a) the heat transfer, in kJ. (b) the change in entropy, in kJ/K.arrow_forwardCarbon Dioxide is contained in a piston-cylinder assembly and undergoes a cycle made of the fol- lowing processes: • Process 1-2: Constant volume from 1 bar, 300 K to 600 K • Process 2–3: Polytropic expansion with n=k until P3 = P1 • Process 3-1: Isobaric compression (a) Sketch the cycle on p-v and T-v coordinates (b) Determine the work and heat transfer in each process, in kJ/kg (c) Determine the type of cycle that this is. If it is a power cycle, compute the thermal efficiency. Otherwise, compute the coefficient of performance for a heat pump cycle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY