Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 50P
Show that β = α(∂ P/∂ T)v.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mass of 12 kg of Oxygen occupying 3 m3 is heated from 25°C at a constant volume. Take gas constant is 0.297 kJ/kgK, then its initial
pressure would be approximately 0.78 bar.
Select one:
O True
O False
Given: Otto Cycle with the following data:
compression ratio = 9
intake air is at 100 KPa and 20°C
maximum cylinder volume = 500 cm³
Temperature at the end of adiabatic compression = 800 K
Cp =1.01 kJ/kgK, Cv=0.718 kJ/kg, k = 1.4, R = 287.1 J/kgK
You have a 3.00-liter container filled with N₂ at 25°C and 4.25 atm pressure connected to a 2.00-liter container filled with Ar at 25°C and 2.75 atm pressure. A stopcock connecting the containers is opened and the gases are allowed to equilibrate between the two containers. What is the final pressure (in atm) in the two containers if the temperature remains at 25°C? Assume ideal behavior.
Chapter 12 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A mass of 15 kg of Oxygen occupying 3 m3 is heated from 25°C at a constant volume. Take gas constant is 297 J/kgK, then its initial pressure would be approximately 1.33 bar. Select one: True Falsearrow_forwardProblem 1. Each of two vessels of equal volume initially contain 1 g of ideal gas each. One vessel is kept at temperature T1 300 K, the other at T2 400 K. The vessels are then connected by a thin tube. Find the mass of gas in each vessel when the system reaches the state of mechanical equilibrium. (Assume that once any amount of gas moves from one vessel to the other vessel, the moved gas quickly reaches the temperature of the destination vessel.)arrow_forwardWhich of the following statements is incorrect? If the change in temperature and the specific heat at constant volume are given, then the A change in internal energy can be found. В B The specific heat ratio for a gas is always greater than unity. If the change in temperature and the specific heat at constant pressure are given, then the change in enthalpy can be found. If the change in temperature and the specific heat at constant pressure are given, then the D change in internal energy can be found.arrow_forward
- A 5kg Cu block at 200 C is submerged in 100 lb water at 10 C in an insulated vessel Determine the final equilibrium temperature.arrow_forward= B- Find an expression for Cp - Cv if the equation of state is p for an ideal gas. RT v-b and Show that CP - Cv=Rarrow_forward1) Given a vessel with V = 0.4 m3 filled with m = 2 of H2O at P = 600 kPa, find • the volume and mass of liquid, and • the volume and mass of vapor.arrow_forward
- The equation dU = T dS – P dV is applicable to infinitesimal changes occurring in A.A closed system with changes in composition B.An open system with changes in composition C.An open system of constant composition D.A closed system of constant composition E.None of thesearrow_forwardBriefly discuss the difference between derivative operators d and ∂. If the derivative ∂u/∂x appears in an equation, what does this imply about variable u?arrow_forwardThe temperature of 4.82 lb of Oxygen occupying 8 cu.ft is changed from 110 deg F to 200 deg F while pressure remains constant at 115 psia.Determine the final volume. (use Charle's Law)Select the correct response:7.26 cu.ft9.26 cu.ft8.26 cu.ft10.26 cu.ftarrow_forward
- 2. A piston-cylinder device contains 0.1 m' of liquid water and 9.0 m' of water vapor in equilibrium at 800 kPa. Heat is transferred at constant pressure until the temperature reaches 350°C. a. Calculate the final volume, and b. Show the process on a P-v diagram with respect to saturation lines. (Plot the diagram)arrow_forwardA tank contains exactly 1 kg of water consisting of liquid and vapour in equilibrium at 1.5 MPa. If the liquid occupy one-fourth the volume of the tank and vapour occupy 3/4 the volume of the tank, what is the enthalpy of the contents of the tank?arrow_forwardFor an ideal gas obtain the explicit expressions for thefollowing:F(V,T,n) =U−TS as a function of V,T and n. G=U+PV−TS as a function of P,T and n.Obtain μ using the relation μ= (∂F/∂n)V,Tarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license