Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.6, Problem 36P
To determine
The change in entropy of air, in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the change in entropy of an ideal gas with constant heat capacity, CP=3.5R between the following States:
P1= 1 bar, T1= 300k; V2= 0.025m³/mol;T2= 500k
Air is expanded in an internally reversible process from p1=10.29 bar and T1=1200K to a final pressure of p2= 1.00 bar.
Determine all properties of the initial and final states (T,p,v,h and u), calculate the work of the process per unit mass, and sketch the process in the T-s and p-v diagrams assuming ideal gas behavior in the 4 following cases.
Adiabatic reversible expansion in an ideal turbine (1 inlet and 1 outlet);
Adiabatic reversible expansion in a (closed) frictionless piston–cylinder device;
Isothermal reversible expansion in an ideal turbine (1 inlet and 1 outlet);
Isothermal expansion in a (closed) frictionless piston–cylinder device.
Kinetic and potential energy terms are negligible in all processes
0.03 m3 of nitrogen having molecular weight 28 contained in a cylinder behind a piston is initially at 1.05 bar and 15°C. The gas is compressed isothermally and reversibly until the pressure is 4.2 bar. Find the change in entropy in kJ/K.
Note: Your answer must be at least 3 decimal places.
Chapter 12 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (b) Sketch a T-v diagram that includes the saturation line, axes values, the initial and final states, and pressure curves for the following processes: Process 1: A piston-cylinder device contains compressed liquid water at 5 MPa and 180°C. Heat is added to the system isobarically until the entire liquid is vaporized. Process 2: Expansion of steam inside a turbine from 5 MPa at 270°C, to 1 MPa at 230°C. Note: Show all steps and calculations involved.arrow_forwardDraw the P-V diagram of the following mechanically reversible process of an ideal gas in a closed system and calculate the total work done. Indicate whether this work is done by the system or on the system. a. State A (2V, P) to State B (V, P) b. State B (V, P) to State C (V, 2P) c. State C (V, 2P) to State D (3V, 2P) d. State D to State A. What is the total internal energy change, enthalpy change and net heat flow (added or extracted) for the process?arrow_forwardSteam at a temperature of 240 oC has a specific volume of 0.15436 m3 /kg. Determine pressure, specific internal energy, enthalpy and entropy.arrow_forward
- In an experiment, a certain amount of air is heated at constant pressure from 1.7 m3, 32 0C and 97 kPa to 413 0C. It is then cooled at constant volume back to its initial temperature. Calculate the change specific entropy in the constant pressure process in the correct unit in SI and 1 decimal place. Take Specific heat at constant pressure and constant volume for air as 1.005 kJ/kg K and 0.717 kJ/kg K respectively. Add unit. 1 decimal place.arrow_forwardIn an experiment, a certain amount of air is heated at constant pressure from 1.7 m3, 20 0C and 97 kPa to 427 0C. It is then cooled at constant volume back to its initial temperature. Calculate the change specific entropy in the cooling process in the correct unit in SI and 1 decimal place. Take Specific heat at constant pressure and constant volume for air as 1.005 kJ/kg K and 0.717 kJ/kg K respectively.arrow_forwardIn an experiment, a certain amount of air is heated at constant pressure from 1.7 m3, 27 0C and 97 kPa to 414 0C. It is then cooled at constant volume back to its initial temperature. Calculate the change specific entropy in the cooling process in the correct unit in SI and 1 decimal place. Take Specific heat at constant pressure and constant volume for air as 1.005 kJ/kg K and 0.717 kJ/kg K respectively. add units.arrow_forward
- 8 kg of water vapor are 2.8mpa and with 100 degrees celsius reject of 2180 kj/kg of steam at constant pressure determine enthalpy(kw), specific internal energy(kw),entropy(kj/K)arrow_forwardIn an experiment, a certain amount of air is heated at constant pressure from 1.7 m3, 39 0C and 97 kPa to 428 0C. It is then cooled at constant volume back to its initial temperature. Calculate the change specific entropy in the constant pressure process in the correct unit in SI and 1 decimal place. Take Specific heat at constant pressure and constant volume for air as 1.006 kJ/kg K and 0.717 kJ/kg K respectively.arrow_forwardOxygen (molar mass 32 kg/kmol ) expands reversibly in a cylinder behind a piston at a constant pressure of 3 bar. The volume initially is 0.0109 m3 and finally is 0.0348 m3; the initial temperature is 16.55 0C. Calculate the absolute temperature after expansion with the correct unit. Assume oxygen to be a perfect gas and take the specific heat at constant pressure as = 0 . 9 1 7 k J / k g K.arrow_forward
- ASAParrow_forwardThe entropy of the system can be determined by integration fromarrow_forwardAn ideal gas with a molecular weight of 7.1 kg/kg mol is compressed from 600 kPa and 280°K to a final specific volume of 0.5 m^3/kg During the process the pressure varies according to P = 620 + 150v + 95v^2 where p is in kPa and v in m^3/kg. Calculate the work of compression in KJ/kg?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license